Вопрос 1. Какие процессы происходят в клетке?

В организме человека, в каждой его клетке, происходят сложные химические превращения, образуются одни вещества, разрушаются другие. Для одних процессов необходима энергия, в ходе других она, наоборот, выделяется.

Вопрос 2. Что является внешним проявлением жизненных процессов?

Проявлением жизненных процессов, протекающих в клетках, является обмен веществ между организмом и окружающей средой. Из внешней среды организм получает кислород, органические вещества, минеральные соли, воду. Во внешнюю среду отдает конечные продукты обмена веществ: углекислый газ, излишек воды, минеральных солей, а также мочевину, соли мочевой кислоты и некоторые другие вещества.

Вопрос 3. Что получает организм из внешней среды?

В процессе этого обмена наш организм получает необходимую для жизни энергию, заключенную в органических веществах (продуктах животного и растительного происхождения). Часть образующейся энергии организм отдает в окружающее пространство: она рассеивается в виде тепла.

Обмен веществ между организмом и окружающей средой - необходимое условие существования живых организмов, это один из основных признаков живого.

Вопрос 4. Какие вещества организм выделяет во внешнюю среду?

Часть образующейся энергии организм отдает в окружающее пространство: она рассеивается в виде тепла. Также продукты обмена, углекислый газ и др.

Вопрос 5. Что называется пластическим обменом?

Пластический обмен (от греч. «пластика» - лепить) - совокупность процессов, приводящих к усвоению веществ и накоплению энергии.

Вопрос 6. Что происходит в организме за счет пластического обмена?

За счет пластического обмена происходит рост, развитие и деление каждой клетки.

Вопрос 7. В чем суть энергетического обмена?

Процесс, в ходе которого происходит распад части поступающих в клетки органических веществ с выделением энергии, называется энергетическим обменом.

Так необходимая для организма энергия поступает в организм с пищей, содержащей сложные органические вещества. В результате целого ряда превращений эти вещества, но уже в более простом, доступном для организма виде, попадают в клетки. Здесь они расщепляются. Например, глюкоза- до воды и углекислого газа. Освободившаяся при этом энергия используется клетками для поддержания своей жизнедеятельности или выполнения той или иной работы: сокращения мышц, проведения нервных импульсов, создания новых веществ.

Вопрос 8. Какова биологическая роль энергетического обмена?

Освободившаяся энергия при энергетическом обмене используется клетками для поддержания своей жизнедеятельности или выполнения той или иной работы. Для поддержания жизни всего организма.

Вопрос 9. Что называется обменом веществ и энергии?

Обмен веществ и энергии – важнейшая функция живого организма и один из важнейших признаков жизни. Заключается в поступлении в организм веществ, необходимых для построения и обновления структурных элементов клеток и тканей, а также выработке энергии для обеспечения жизненных процессов, и в удалении из него образовавшихся продуктов распада.

ПОДУМАЙТЕ

Почему пластический и энергетический обмены неразрывно связаны между собой и являются двумя сторонами единого процесса обмена веществ и энергии?

Процессы пластического и энергетического обменов происходят одновременно, они тесно взаимосвязаны. Это две стороны единого процесса обмена веществ и энергии.

Если смотреть по порядку, то усвоение веществ организмом это пластический обмен, распад части поступающих в клетки органических веществ с выделением энергии это энергетический обмен, накопление энергии в клетках это энергетический обмен, а при этом идет рост и развитие молодого организма, а это пластический обмен.

Т. е. пластический и энергетический обмены – это части одного глобального и сложного процесса (процесс обмена веществ и энергии), который проходит в организме.

Метаболизм, то есть совокупность всех химических реакций, происходящих в организме, включает в себя энергетический и пластический обмен. Первый - это реакции, направленные на получение энергии вследствие расщепления сложных органических соединений на более простые. Он еще называется катаболизмом. Пластический обмен называют еще анаболизмом. Он подразумевает реакции, с помощью которых организм синтезирует нужные ему сложные химические вещества из простых с использованием энергии. Таким образом, получается, что, добыв энергию в процессе катаболизма, часть её организм тратит на синтез новых органических веществ.

Энергетический обмен: особенности и этапы

Этот вид обмена веществ осуществляется в три стадии: подготовительная, анаэробное брожение, или гликолиз, и клеточное дыхание. Рассмотрим их более подробно:

Пластический обмен — это что? Какие у него особенности?

Рассмотрев процесс катаболизма, можно перейти к описанию анаболизма, который является важной составляющей обмена веществ. Вследствие этого процесса образуются вещества, из которых построена клетка и весь организм в целом, которые могут служить в качестве гормонов или ферментов и т. д. Пластический обмен (он же биосинтез, или анаболизм) происходит, в отличие от катаболизма, исключительно в клетке. Он включает в себя три разновидности: фотосинтез, хемосинтез и биосинтез белков. Первый используется только растениями и некоторыми фотосинтезирующими бактериями. Такие организмы называются автотрофами, так как сами вырабатывают для себя органические соединения из неорганических. Второй используется определенными бактериями, в том числе и анаэробными, для жизни которых не требуется кислород. Формы жизни, использующие хемосинтез, называются хемотрофами. Животные и грибы относятся к гетеротрофам — существам, которые получают органические вещества из других организмов.

Фотосинтез

Это процесс, который, по сути, является основой жизни на планете Земля. Всем известно, что растения забирают из атмосферы углекислый газ и отдают кислород, но давайте более подробно рассмотрим, что же происходит во время фотосинтеза. Этот процесс осуществляется посредством реакции, которая предусматривает образование глюкозы и кислорода из углекислого газа и воды. Очень важный фактор - наличие солнечной энергии. Во время такого химического взаимодействия из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна - глюкозы.

Где происходит этот процесс?

Местом проведения подобного рода реакции являются зеленые листья растений, а точнее хлоропласты, которые содержатся в их клетках. В этих органеллах содержится хлорофилл, благодаря которому и происходит фотосинтез. Данное вещество также обеспечивает зеленый цвет листков. Хлоропласт окружен двумя мембранами, а в его цитоплазме расположены граны — стопки из тилакоидов, которые имеют собственную мембрану и содержат хлорофилл.

Хемосинтез

Хемосинтез — это также пластический обмен. только характерен он для микроорганизмов, в том числе и серных, нитрифицирующих и железобактерий. Они используют энергию, полученную в процессе окисления определенных веществ, для восстановления углекислого газа до органических соединений. Веществами же, которые окисляются данными бактериями в процессе энергетического обмена, являются сероводород для первых, аммиак для вторых и закись железа для последних.

Биосинтез белков

Обмен белков в организме подразумевает расщепление тех, которые были употреблены в пищу, на аминокислоты и построение из последних своих собственных белков, свойственных именно данному живому существу. Пластический обмен - это синтез белков клеткой, он включает в себя два основных процесса: транскрипцию и трансляцию.

Транскрипция

Это слово многим известно из уроков английского языка, однако в биологии данный термин имеет совсем другое значение. Транскрипция — это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. Осуществляется он в ядре клетки и насчитывает три стадии: образование первичного транскрипта, процессинг и сплайсинг.

Трансляция

Этот термин обозначает перенос зашифрованной на иРНК информации о структуре белка на синтезирующийся полипептид. Местом для проведения данного процесса служит цитоплазма клетки, а именно, рибосома — специальный органоид, который отвечает за синтез белков. Это органелла овальной формы, состоящая из двух частей, которые соединяются в присутствии иРНК.

Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом под названием аминоацил Т-РНК-синтетаза. Для этого также используется АТФ. Впоследствии образуется аминоациладенилат. Далее следует процесс присоединения активированной аминокислоты к транспортной РНК, при этом выделяется АМФ (аденозинмонофосфат). Затем, на третьем этапе, образованный комплекс соединяется с рибосомой. Далее происходит включение аминокислот в структуру белка в определенном порядке, после чего тРНК высвобождается.

Обмен веществ и энергии является одним из основных признаков живого вещества. Обмен веществ — это совокупность процессов химического превращения веществ от момента их поступления в организм до выделения конечных продуктов обмена. В клетках постоянно идет синтез сложных органических соединений с использованием энергии и одновременно с этим — их расщепление и окисление с выделением энергии и образованием низкомолекулярных веществ.

Обмен веществ — совокупность реакций пластического (ассимиляции) и энергетического (диссимиляции) обменов.

Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых. Реакции пластического обмена являются эндотермическими (идут с поглощением энергии).

Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ: белков — до O 2 , H 2 O, NH 2 или мочевины; жиров и углеводов — до CO 2 , и H 2 O.

Источником энергии для организма являются органические вещества: углеводы, жиры, белки. Образовавшаяся в реакциях энергетического обмена химическая энергия преобразуется в дальнейшем в электрическую, тепловую и механическую энергию. Для нормального обмена необходимы также вода, минеральные соли и витамины.

Этапы обмена веществ :

Ассимиляция и диссимиляция неразрывно связаны между собой:

  • для ассимиляции необходима энергия, которая образуется в реакциях энергетического обмена;
  • для реакций диссимиляции необходимы ферменты, которые образуются в реакциях пластического обмена;
  • ассимиляция и диссимиляция протекают в клетке одновременно и заключительные этапы одного обмена являются начальными стадиями другого.

Водно-минеральный обмен в организме

Вода входит в состав клеток, межклеточного вещества, тканевой жидкости и лимфы. Она составляет 65-70% массы тела человека (у детей больше), а плазма крови и лимфа содержат свыше 90% воды.

Значение воды в организме :

  • определяет физические свойства клетки (объем, массу, тургор);
  • универсальный растворитель;
  • основной компонент внутренней среды, место протекания большинства биохимических реакций в клетке;
  • участник реакций гидролиза, АТФ + H 2 O = АДФ + H 3 PO 4 < 40кДж;
  • участвует в транспорте веществ: поглощение питательных веществ, их передвижение и выведение конечных продуктов обмена происходит в виде водных растворов;
  • обеспечивает терморегуляцию, обеспечивая одинаковую температуру во всех частях тела организма.

Связанная вода образует сольватные (водные) оболочки вокруг белков, благодаря чему белки не слипаются друг с другом. Гидрофобно-гидрофильные взаимодействия между разными частями белковой молекулы обеспечивают образование ее четвертичной структуры.

Суточная потребность человека в воде меняется в зависимости от условий внешней среды и в среднем составляет 2-2,5 л.

Вода поступает в организм при питье (около 1 л), с пищей (около 1 л) и небольшое количество (300-350 мл) ее образуется в результате окисления органических веществ.

Вода всасывается в кишечнике (тонком и толстом), и небольшое количество ее может всасываться в ротовой полости и желудке.

Из организма вода выводится с мочой (1,2-1,5 л), с потом (500-700 мл), с выдыхаемым воздухом (350-800 мл), с калом (100-150 мл).

Минеральные соли в организме могут быть в твердом состоянии в виде кристаллов — Ca 3 (PO 4) 2 , и CaCO 3 , в костной ткани; в диссоциированном состоянии в виде катионов и анионов.

Анионы фосфорной и угольной кислот обладают буферными свойствами, т.е. способны поддерживать pH (концентрацию ионов водорода) на определенном уровне. Анионы фосфорной кислоты HPO 4 2- создают фосфатную буферную систему, поддерживающую внутри клеток слабокислую среду (pH = 6,9), а угольная кислота и ее анионы HCO 3 — создают бикарбонатную буферную систему, которая поддерживает слабощелочную реакцию внеклеточной среды (например, плазма крови) (pH = 7,4).

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке (K + , Na + ,Cl —), в процессах мышечного сокращения, свертывании крови (Ca 2+), другие необходимы для синтеза важных органических веществ. Например, остатки фосфорной кислоты входят в состав нуклеотидов, АТФ, ион Fe 2+ — в состав гемоглобина, Mg 2+ — в состав ферментов. Ионы NO 3 — , NH 4 + являются источником атомов азота, ион SO 4 2- — атомов серы, которые необходимы для синтеза аминокислот. Минеральные соли создают осмотическое давление, которое обеспечивает транспорт веществ между клетками организма.

Общее количество минеральных солей в организме человека — около 4,5%.

Потребности организма в минеральных солях удовлетворяются продуктами питания. Железа много в яблоках, иода — в морской капусте, кальция — в молочных продуктах. Человек нуждается в постоянном поступлении натрия и хлора. Поваренную соль (хлористый натрий) добавляют к пище (до 10 г в сутки). В некоторых регионах в поваренную соль добавляют иод (в связи с недостатком его в воде и местных продуктах питания).

Всасывание минеральных солей происходит вместе с водой в основном в толстом кишечнике. Попавшие в кровь минеральные соли доставляются клеткам организма.

Излишки минеральных солей выводятся из организма с мочой, потом и калом.

Обмен белков

Все белки построены из 20 аминокислот, но, несмотря на это, разнообразие белковых молекул огромно. Они обладают специфичностью, которая определяется количеством и порядком расположения аминокислот, различным сочетанием аминокислот, способностью белков присоединять другие вещества.

Роль белков в организме :

  • входят в состав мембран и органелл клетки;
  • из кератина и коллагена состоят хрящи, сухожилия, волосы, ногти;
  • некоторые белки способны присоединять и переносить различные вещества:
    • гемоглобин переносит кислород и диоксид углерода;
    • альбумины крови транспортируют жирные кислоты;
    • глобулины — ионы металлов и гормоны;
  • актин и миозин входят в состав миофибрилл мышечной ткани;
  • иммуноглобулины (антитела) обеспечивают защитные реакции иммунитета, протромбин и фибриноген участвуют в защитной реакции свертывания крови;
  • некоторые белки, встроенные в плазмалемму, способны изменять свою пространственную конфигурацию под действием факторов внешней среды (родопсин палочек сетчатки глаза);
  • многие гормоны имеют белковую природу (инсулин, глюкагон, АКТГ);
  • все ферменты являются белками (трипсин, ДНК-полимераза).

Суточная потребность в белках составляет 72-92 г. Источником белков для человека служат преимущественно продукты животного. Большое количество белков содержится в мясе (от 14 до 21%), рыбе, молоке и продуктах его переработки. Продукты растительного происхождения содержат 8-23% белков (бобовые растения).

По содержанию необходимых для организма аминокислот белки делятся на полноценные (белки молока, мяса, рыбы и др.) и неполноценные , которые не содержат хотя бы одной из незаменимых кислот. Особенно важны 10 аминокислот, которые не могут синтезироваться в организме и называются незаменимыми (лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин и гистидин). Отсутствие в пище некоторых из них приводит к нарушению синтеза белков. При отсутствии в пище лизина замедляется рост ребенка, при недостатке валина — нарушается чувство равновесия и т.д.

Протеолитические ферменты (пепсин и химозин желудочного сока, трипсин и химотрипсин сока поджелудочной железы, энтерокиназа, аминопептидаза, карбоксипептидаза кишечного сока) расщепляют белки до полипептидов и аминокислот.

Аминокислоты всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по всему организму. В клетках из аминокислот образуются белки, свойственные данному организму. При избытке белки преобразуются в углеводы и жиры. Часть аминокислот, не использованных в синтезе белка, окисляется с освобождением энергии (17,6 кДж на 1 г вещества) и образованием воды, диоксида углерода, аммиака и др. Аммиак в печени обезвреживается и превращается в мочевину.

Продукты диссимиляции белков выводятся из организма с мочой, потом и частично с выдыхаемым воздухом.

Обмен углеводов

Углеводы — представляют собой первичные продукты фотосинтеза и исходные продукты для биосинтеза всех других органических веществ. Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Значение углеводов в организме :

  • олигосахариды входят в состав цитоплазматической мембраны клетки и образуют гликокаликс;
  • гликоген составляет энергетический запас в клетках;
  • глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе дыхания;
  • моносахариды являются основой для синтеза многих органических веществ в клетке — полисахаридов, нуклеиновых кислот и др.

В сутки человек должен получать 358-484 г углеводов. Основным их источником являются продукты растительного происхождения (картофель, хлеб, фрукты и др.). Углеводы в организме могут образовываться из белков и жиров.

Амилолитические ферменты (амилаза и мальтаза слюны, амилаза, мальтаза, лактаза, сахараза сока поджелудочной железы и тонкого кишечника) расщепляют углеводы до дисахаридов и моносахаридов.

Моносахариды всасываются в кровеносные капилляры ворсинок тонкого кишечника и разносятся кровью по всему организму. Уровень глюкозы в крови относительно постоянен и составляет 4,4-7,0 ммоль/л.

Избыток глюкозы превращается в печени в гликоген. При чрезмерном поступлении в организм углеводов они могут превращаться в жиры.

В клетках глюкоза окисляется до диоксида углерода и воды, которые удаляются с выдыхаемым воздухом, мочой, потом, при этом выделяется энергия (17,6 кДж на 1 г глюкозы).

Обмен жиров

Липиды — органические соединения, не растворимые в воде, но хорошо растворимые в органических растворителях (эфире, бензине, бензоле, хлороформе и др.). Из всех биомолекул липиды обладают наименьшей относительной молекулярной массой. Молекула жира образована молекулой трехатомного спирта глицерина и присоединенными к ней эфирными связями тремя молекулами высших карбоновых кислот: пальмитиновой, стеариновой, арахидоновой, олеиновой, линолевой, линоленовой.

Значение жиров и жироподобных веществ в организме :

  • входят в состав клеточных мембран, цитоплазмы, ядра;
  • в форме липидов хранится значительная часть энергетических запасов организма;
  • накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм и отдельные органы от механических повреждений;
  • благодаря низкой теплопроводности слой подкожного жира помогает сохранять тепло;
  • многие биологически активные вещества (гормоны и витамины) являются стероидами (тестостерон у мужчин и прогестерон у женщин, кортикостероиды, витамин D).

Суточная потребность в жирах составляет 81-110 г. Жиры поступают в организм с растительной и животной пищей. Животные жиры поступают в организм в виде сливочного масла, сыра, сметаны, свиного сала. Растительные жиры поступают в организм в виде растительного масла.

Липолитические ферменты (липазы желудочного сока, сока поджелудочной железы и тонкого кишечника) расщепляют жиры до глицерина и жирных кислот. Жирные кислоты соединяются со щелочами и желчными кислотами, омыляются, образуя растворимые соли, которые всасываются через стенки ворсинок. В ворсинках из глицерина и жирных кислот синтезируются жиры, поступающие в лимфатические капилляры ворсинок тонкого кишечника. Жиры всасываются в лимфу, затем поступают в кровь и разносятся по всем клеткам.

Часть жира, попавшего в клетки, является строительным материалом. Большая же его часть откладывается в подкожной клетчатке, в сальнике, печени, мышцах. Жиры также являются важным источником энергии: при окислении 1 г жира выделяется 38,9 кДж энергии. В организме человека жиры могут синтезироваться из углеводов и белков.

Конечными продуктами окисления жиров являются диоксид углерода и вода, которые удаляются с выдыхаемым воздухом, мочой, потом.

Витамины и их роль в обмене веществ. Гиповитаминозы

Витамины — низкомолекулярные вещества, обладающие большой биологической активностью, необходимые для жизнедеятельности организмов.

В 1881 г. русским ученым Н. И. Луниным было обнаружено, что мыши погибают, если их кормить пищевой смесью, состоящей из очищенных продуктов. Если же добавить в рацион 1 мл молока, мыши остаются здоровыми. В 1911-1912 гг. польский ученый К. Функ выделил препарат из отрубей и назвал его витамином. С этого времени началось интенсивное изучение витаминов.

Витамины обозначают буквами латинского алфавита А, В, С, D, Е, Р и т. д. Натуральные (естественные) витамины содержатся в продуктах растительного и животного происхождения и, за редким исключением, не синтезируются в организме человека. Витамины бывают водорастворимые (C, P, группы B) и жирорастворимые (A, D, E, K).

Свойства витаминов :

  • входят в состав молекул многих ферментов и некоторых физиологически активных веществ;
  • непрочные соединения: быстро разрушаются при нагревании пищевых продуктов;

Отсутствие витаминов в организме называется авитаминозом , недостаток — гиповитаминозом . Избыточное поступление витаминов в организм — гипервитаминоз — наблюдается при употреблении синтетических препаратов витаминов. Наиболее токсичны витамины А и D. Иногда гипервитаминоз А возникает при приеме в пищу продуктов, содержащих большое количество этого витамина (овощи, печень морских животных). Из водорастворимых витаминов наиболее токсичен B 12 (в больших дозах вызывают сильные аллергические реакции).

Витамин А (ретинол) участвует в окислительно-восстановительных реакциях. Содержится в сливочном масле, печени, молоке, рыбьем жире. В овощах (морковь) содержится провитамин A — каротин. Он превращается в витамин A в печени. Суточная доза — 1,5 мг.

Признаки гипо- и авитаминоза:

  • задержка роста;
  • сухость и помутнение роговицы;
  • «куриная слепота» (нарушение сумеречного зрения);
  • сухость кожи;
  • снижение сопротивляемости к заболеваниям.

Витамин D (антирахитический, кальциферол) стимулирует образование костной ткани, регулирует обмен кальция и фосфора. Содержится в сливочном масле, печени трески, курином желтке, рыбьем жире. Может образовываться в коже из эргостерина (провитамин D) под действием ультрафиолетовых лучей. Суточная доза — 0,01-0,02 мг.

Признаки гипо- и авитаминоза:

  • рахит:
    • размягчение костей;
    • искривление костей ног;
    • уплощение груди;
    • незарастание родничков;
    • позднее появление зубов у детей.

Витамин E (токоферол) предохраняет мембраны клеток и митохондрий от повреждений, участвует в окислительно-восстановительных процессах, в обмене белков, сокращении мышц, укрепляет стенки сосудов, разрушает свободные радикалы. Содержится в зеленых листьях овощей, орехах, семечках, гречневой крупе, проросших ростках пшеницы, в яйцах, растительных маслах. Суточная доза — 10-12 мг.

Признаки гипо- и авитаминоза:

  • дистрофия скелетных мышц;
  • нарушение половой функции.

Витамин K (викасол) участвует в свертывании крови. Синтезируется микрофлорой кишечника, содержится в капусте, зеленых томатах, шпинате, ягодах рябины. Из животных продуктов его источником является печень. Суточная доза — 1 мг.

Признаки гипо- и авитаминоза:

  • замедление свертывания крови;
  • самопроизвольные кровотечения.

Витамин C (аскорбиновая кислота) участвует в окислительно-восстановительных реакциях. Содержится в смородине, лимонах, клюкве, зеленом луке, картофеле. Суточная доза — 50 мг.

Признаки гипо- и авитаминоза:

  • цинга:
    • повышенная утомляемость;
    • кровоточивость десен;
    • выпадение зубов;
    • кровоизлияния;
    • снижение иммунитета.

Витамин B 1 (тиамин) участвует в регуляции обмена белков, жиров и углеводов. Содержится в дрожжах, орехах, неполированном рисе, печени, желтке куриного яйца. Суточная доза — 2,5 мг. Гипо- и авитаминоз — бери бери (поражение нервной системы с параличом конечностей и атрофией мышц).

Витамин B 2 (рибофлавин) участвует в регуляции обмена веществ, в окислительно-восстановительных реакциях. Содержится в мясе, яйцах, молоке, печени, фруктах, овощах. Суточная доза — 2,5 мг. Признаки гипо- и авитаминоза: поражение роговицы, «заеды» (ангулярный стоматит), задержка роста.

Витамин B 3 (пантотеновая кислота) является коферментом ключевых реакций метаболизма жиров. Содержится в пчелином маточном молочке и пивных дрожжах. Достаточно много его в печени животных, яичном желтке, гречихе, овсе, бобовых. Суточная доза — 10-15 мг. Признаки гипо- и авитаминоза: психоэмоциональная неустойчивостью, склонность к обморокам, изменение походки, чувство жжения стоп.

Витамин B 5 (витамин PP, никотиновая кислота) входит в состав ферментов, являющихся катализаторами окислительно-восстановительных реакций, обмена белков и т-РНК. Источником витамина являются животные (особенно печень, мясо) и многие растительные продукты (рис, хлеб, картофель). Суточная доза — 10-20 мг. Признаки гипо-и авитаминоза: дерматит (воспаление открытых участков кожи), диарея (поносы), деменция (слабоумие).

Витамин B 6 (пиридоксин) участвует в регуляции обмена аминокислот. Содержится в дрожжах, рисе, мясе, бобах. Суточная доза — 2,5 мг. Признаки гипо- и авитаминоза: воспаление кожи и нервов.

Витамин B 9 (фолиевая кислота, витамин B c) участвует в обмене белков и нуклеиновых кислот. Витамина много в лиственных овощах, например в шпинате. Он содержится в салате, капусте, томатах, землянике. Богаты им печень и мясо, яичный желток. Суточная доза — 0,3-1 мг. Признаки гипо- и авитаминоза: анемия — в крови появляются большие незрелые кроветворные клетки; снижается количество эритроцитов и гемоглобина в крови.

Витамин B 12 (антианемический) — участвует в регуляции обмена белков, жиров и углеводов. Содержится в печени, мясе, твороге, яйцах. Суточная доза — 200-300 мкг. Гипо- и авитаминоз — злокачественное малокровие (анемия).

Витамин H (биотин) — участвует в транспорте диоксида углерода, в обмене углеводов и жиров. Содержится в молоке, яйцах, печени, цветной капусте, грибах, синтезируется бактериями кишечника. Суточная доза — 150-200 мкг. Гипо- и авитаминоз — заболевания кожи, выпадение волос.

Методами сохранения витаминов в пищевых продуктах являются :

  • консервирование (метод сохранения продуктов со сравнительно небольшими потерями витаминов);
  • замораживание с образованием в цитоплазме клеток кристаллов льда (быстрое замораживание хорошо сохраняет витамины);
  • в наибольшей степени обеспечивает сохранность витаминов вакуумная сушка. Проводится в условиях разряжения при температуре не выше 50 °С;
  • квашение овощей и фруктов (в процессе молочнокислого брожения образуется молочная кислота, способствующая сохранению в заквашиваемых продуктах витамина C).

Примеры закрытых тестов

2.1. Общее количество минеральных солей в организме человека (в % от массы тела) :

  1. 0,45;
  2. 22,5;
  3. 2,25.

3.1. Незаменимыми аминокислотами не являются :

  1. валин;
  2. метионин;
  3. серин;
  4. фенилаланин;
  5. лизин.

3.2. Расщепление белков начинается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

3.3. В организме человека белки могут :

  1. превращаться в жиры;
  2. откладываться в запас;
  3. окисляться с высвобождением 7,6 кДж энергии на 1 г вещества;
  4. окисляться с высвобождением 40 кДж энергии на 1 г вещества.

4.1. Расщепление углеводов начинается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

4.2. Конечными продуктами диссимиляции углеводов являются :

  1. O 2 , H 2 O;
  2. CO 2 , глюкоза, H 2 O;
  3. CO 2 , H 2 S;
  4. O 2 , H 2 S;
  5. CO 2 , H 2 O.

4.3. В организме человека углеводы могут :

  1. запасаться в виде гликоген;
  2. запасаться в виде крахмала;
  3. запасаться в виде целлюлозы;
  4. окисляться с высвобождением 38,9 кДж энергии на 1 г вещества;
  5. превращаться в белки.

5.1. Расщепление жиров заканчивается в :

  1. ротовой полости;
  2. желудке;
  3. тонком кишечнике;
  4. толстом кишечнике;
  5. печени.

5.2. Одним из конечных продуктов обмена жиров является :

  1. аминокислота;
  2. вода;
  3. кислород;
  4. глицерин;
  5. карбоновая кислота.

5.3. В организме человека жиры могут :

  1. откладываться в запас;
  2. запасаться в виде крахмала;
  3. окисляться с высвобождением 17,6 кДж энергии на 1 г вещества;
  4. окисляться с высвобождением 40 кДж энергии на 1 г вещества;
  5. превращаться в белки.

6.1. Бери-бери — это проявление гиповитаминоза :

  1. B 1 ;
  2. B 12 .

6.2. Фолиевая кислота — это витамин :

  1. B 1 ;
  2. B 6 ;
  3. B 12 ;
  4. B c .

Примеры открытых тестов

  • 1.1. Дайте определение понятия «обмен веществ».
  • 1.2. Дайте определение понятия «ассимиляция».
  • 1.3. Дайте определение понятия «диссимиляция».
  • 1.4. Перечислите этапы обмен веществ.
  • 2.1. Укажите суточную потребность организма человека в воде.
  • 3.1. Укажите суточную потребность организма человека в белках.
  • 4.1. Укажите суточную потребность организма человека в углеводах.
  • 5.1. Укажите суточную потребность организма человека в жирах.
  • 6.1. Недостаток витаминов в организме называется …
  • 6.2. Перечислите признаки гиповитаминоза A.
  • 6.3. Перечислите признаки гиповитаминоза D.
  • 6.4. Перечислите признаки гиповитаминозов группы В.
  • 6.5. Перечислите признаки гиповитаминоза С.
  • 6.6. Перечислите свойства витаминов.
  • 6.7. Перечислите способы сохранения витаминов в пищевых продуктах.

Ответы на закрытые тесты

2.1 — 2 3.1 — 3 3.2 — 2 3.3 — 1 4.1 — 1 4.2 — 5
4.3 — 1 5.1 — 3 5.2 — 2 5.3 — 1 6.1 — 4 6.2 — 5

Ответы на открытые тесты

  • 1.1. Обмен веществ — совокупность реакций пластического (ассимиляции) и энергетического (диссимиляции) обменов.
  • 1.2. Пластический обмен (ассимиляция) — совокупность реакций синтеза сложных органических веществ (белков, жиров, углеводов и нуклеиновых кислот) из более простых.
  • 13. Энергетический обмен (диссимиляция) — совокупность реакций, обеспечивающих клетку энергией, в ходе которых происходит расщепление и окисление сложных органических веществ до неорганических веществ.
  • 1.4:
    • поступление веществ в организм;
    • изменение веществ в ходе ассимиляции и диссимиляции;
    • выведение конечных продуктов обмена.
  • 2.1. Суточная потребность организма человека в воде составляет 2-2,5 л в зависимости от условий существования.
  • 3.1. Суточная потребность организма человека в белках составляет 72-92 г.
  • 4.1. Суточная потребность организма человека в улгеводах составляет 358-484 г.
  • 5.1. Суточная потребность организма человека в жирах составляет 81-110 г.
  • 6.1. Гиповитаминоз.
  • 6.2:
    • куриная слепота (нарушение сумеречного зрения);
    • сухость роговицы глаза и ее помутнение;
    • снижение иммунитета;
    • сухость кожи.
  • 6.3:
    • искривление костей ног;
    • уплощение груди;
    • не зарастание родничков черепа.
  • 6.4:
    • поражение нервной системы;
    • задержка роста;
    • нарушение зрения;
    • малокровие;
    • дерматиты.
  • 6.5:
    • поражение стенок кровеносных сосудов;
    • кровоточивость десен;
    • снижение иммунитета;
    • быстрая утомляемость.
  • 6.6:
    • входят в состав ферментов и физиологически активных веществ;
    • быстро разрушаются при нагревании пищевых продуктов;
    • действие их проявляется в малых количествах и выражается в регуляции процессов обмена веществ.
  • 6.7:
    • консервирование;
    • замораживание;
    • вакуумная сушка;
    • квашение продуктов.

Основными видами пластического обмена являются: 1) белковый; 2) углеводный;

3) липидный; 4) нуклеиновый.

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

Распад белков в аэробных условиях называется тлением, в анаэробных – гниением. В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются дл моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям: по пути анаэробного распада углеводов-брожению (гликолизу) и в аэробных условиях – по пути горения.

В зависимости от конечных продуктов выделяют следующие виды брожения:

1) спиртовое (характерно для грибов);

2) пропионионово-кислое (характерно для клостридий, пропиони-бактерий);

3) молочнокислое (характерно для стрептококков);

4) маслянокислое (характерно для сарцин);

5) бутилденгликолевое (характерно для бацилл).

Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофосфатный, кетодезоксифосфоглюконатный). Они отличаются ключевыми продуктами и реакциями.

Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

Липазы катализируют распад нейтральных жирных кислот, т.е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требут кислорода.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

Конец работы -

Эта тема принадлежит разделу:

Медицинская микробиология, вирусология и иммунология

Тульский государственный университет.. кафедра санитарно гигиенических и профилактических.. честнова т в смольянинова о л..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткая история развития микробиологии
Заслуга открытия микроорганизмов принадлежит голландскому натуралисту А. Левенгуку (1632-1723г.г.), создавшему первый микроскоп с увеличением в 300 раз. В 1695г. он издал книгу «Тайны природы» с ри

Микробиологические лаборатории, их оборудование, основы техники безопасности и правила работы в них
Микробиологическая лаборатория – это учебное, научное или производственное учреждение или же структурное подразделение учреждения/предприятия, выполняющее экспериментальные, диагностические

Микроскопы, их устройство, техника микроскопирования микроорганизмов, правила обращения с микроскопом. Виды микроскопии
Для обнаружения и исследования микроорганизмов применяют световые микроскопы разных моделей («МБИ-1», «Биолам», «Бимам», «Микмед»). Для изучения более мелких объектов (вирусов) исп

Методы приготовления и окрашивания микроскопических препаратов
Микроскопический метод исследования предусматривает наблюдение за живыми и убитыми бактериями в окрашенном и неокрашенном состоянии. С целью изучения формы и подвижности ба

Рост и размножение микроорганизмов. Фазы роста
Рост бактерий –это увеличение бактериальной клетки в размерах без увеличения числа особей в популяции. Рост клетки не беспределен. После достижения критических размеров клетка подв

Питание бактерий
Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки. Среди необходимых пи

Метаболизм бактериальной клетки
В процессе метаболизма выделяют два вида обмена: 1) пластический (конструктивный): анаболизм (с затратами энергии), катаболизм (с выделением энергии); 2) энергетический обмен (протекает в дыхательн

Принципы и методы выделения чистых культур. Ферменты бактерий, их идентификация. Внутривидовая идентификация (эпидемиологическое маркирование)
Чистой культурой микробов называют популяцию микроорганизмов одного вида, полученную из изолированной микробной колонии. Под микробной колонией подразумевает­ся потомство бактерий,

Рост бактерий с равномерным помутнением среды
2. Придонный рост бактерийхарактеризуется обра­зованием осадка на дне пробирки с жидкой питательной сре­дой. Осадок может быть скудным или обильным, крошковидным, гомогенным, волок

Особенности физиологии грибов, простейших, вирусов и их культивирование
Грибы по типу питания – гетеротрофы, по отношению к кислороду – аэробы и факультативные анаэробы. Культивирование грибов производится в аэробных условиях при температуре 22-370С

Влияние физических факторов
Влияние температуры. Низкие температуры микробы переносят сравнительно легко. Холерный вибрион не теряет жизнеспособности от температуры -320С; некоторые виды бактерий о

Влияние химических веществ
Химические вещества могут оказывать различное действие на микроорганизмы: служить источником питания, не оказывать какого-либо действия, стимулировать или подавлять рост, вызывать гибель. Антимикро

Влияние биологических факторов
Микроорганизмы находятся в различных взаимоотношениях друг с другом. Совместное существование двух различных организмов называется симбиозом. Различают несколько вариантов полезных взаимоотношений:

Понятие о стерилизации, дезинфекции, асептике и антисептике. Методы стерилизации, аппаратура. Контроль качества дезинфекции
Стерилизация– полная инактивация микробов в объектах, подвергающихся обработке. Существует 3 основных метода стерилизации: тепловая, лучевая, химическая. Тепловая

Нормофлора, ее значение для микроорганизма. Понятие о транзиторной флоре. Понятие о дисбиотических состояниях. Их оценка. Методы коррекции
Организм человека заселен (колонизирован) примерно 500 видами микроорганизмов, соствляющих его нормальную микрофлору в виде сообщества микроорганизмов (микробиоценоз). Они находятся в состоянии рав

Строение бактериального генома. Фенотипическая и генотипическая изменчивость микроорганизмов. Мутации. Модификации
Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к

Генотипические рекомбинации микроорганизмов. Основы генной инженерии. Практическое применение
Рекомбинации– обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом. У бактерий существует несколько механизмов рекомбинаций:

Генетическая инженерия и область ее применения в биотехнологии
Генетическая инженерия является сердцевиной биотехнологии. Она, по существу, сводится к генетической рекомбинации, т.е. к обмену генами между двумя хромосомами. Метод рекомбинации in vitro или гене

Диско-диффузный метод
Для исследования можно использовать стандартные питательные среды: отечественные среды АГВ №1, №2 и зарубежные – Мюллер-Хинтон агар. На поверхность подсушенной питательной среды в чашке Пе

Патогенность и вирулентность. Факторы патогенности
Среди бактерий по способности вызывать заболевания выделяют: 1)патогенные; 2) условно-патогенные; 3) сапрофитные. Патогенные виды потенциально способны вызывать инфекционн

Токсины бактерий, их природа, свойства, получение
Токины бактерий –продукты метаболизма, оказывающие непосредственное токсическое воздействие на специфические клетки макроорганизма, либо опосредованно вызывающие развитие симптомов


Эпидемический процесс – это процесс возникновения и распространения среди населения специфических инфекционных состояний – от бессимптомного носительства до манифестных заболеваний

Понятие об иммунитете. Виды иммунитета. Неспецифические факторы защиты
Иммунология – это наука, предметом изучения которой является иммунитет. Инфекционная иммунология изучает закономерности иммунной системы по отношению к микробным агентам, специфические мех

Центральные и периферические органы иммунной системы. Клетки иммунной системы. Формы иммунного ответа
Органы иммунной системы делят на: 1) первичные (центральные) – вилочковая железа, костный мозг – являются местами дифференцировки популяций лимфоцитов; 2) вторичные (периферические)

Комплемент, его структура, функции, пути активации. Роль в иммунитете
Комплимент является одним из важных факторов гуморального иммунитета, играющим роль в защите организма от антигенов. Он был открыт в 1899г. французским иммунологом Борде, назвавшим его «алексином».

Антигены бактерий
Существуют следующие разновидности бактериальных антигенов: группоспецифические (встречаются у разных видов одного рода или семейства); видоспецифические (встречаются у различных представителей одн

Серологические реакции и их применение
Взаимодействие антитела с антигеном являются основой диагностических реакций в лабораториях. Реакция между АГ и АТ состоит из специфической и неспецифической фазы. В специфическую фазу происходит б

Определения групп крови
Применяются различные варианты реакции агглютинации: развернутая, ориентировочная Для определения у больного антител ставят в пробирках развернутую реакцию

Иммунодефицитные состояния. Аллергические реакции. Аутоиммунные процессы
Иммунодефицитными состояниями называют нарушения иммунного статуса и способности к нормальному иммунному ответу на разные антигены. Эти нарушения обусловлены дефектами одного или нескольких звеньев

Иммунопрофилактика, иммунотерапия
Иммунопрофилактика и иммунотерапия являются разделами иммунологии, которые изучают и разрабатывают способы и методы специфической профилактики, лечения и диагностики инфекционных и неинфекционных б

Сальмонеллы
Относятся к семейству Enterobacteriaceae, роду Salmonella, который состоит из двух видов: S. enterica- возбудители заболеваний человека и животных

Факторы патогенности
1. белок наружной мембраны инвазин – обеспечивает резистентность к фагоцитозу; 2. фермент супероксиддисмутаза – антифагоцитарная активность сальмонелл; 3. эндотоксин – развитие ли

Шигеллы
Возбудители дизентерии относятся к семейству Enterobacteriaceae, роду Shigella, который включает 4 вида, отличающихся по биохимическим свойствам и антигенной структуре: S. dysenteriae, S. flexneri,

Эшерихии
Возбудитель эшерихиозов относится к семейству Enterobacteriaceae, роду Escherichia, который включает несколько видов. В патологии человека имеет значение только вид E. сoli. Эшерихии

Холерный вибрион
Холера –особо опасная карантинная болезнь, вызываемая Vibrio cholerae, серогрупп О1 и О139, характеризующаяся токсическим поражением тонкого кишечника, нарушением

Иерсинии
К энтеропатогенным иерсиниям относят возбудителей псевдотуберкулеза и кишечного иерсиниоза. Возбудители данных заболеваний относятся к семейству Enterobacteriaceae, роду Ye

Общая характеристика и возбудители ПТИ
Пищевые токсикоинфекции (ПТИ) бактериальной этиологии подразделяются на токсикоинфекции, токсикозы (интоксикации). К основным возбудителям ПТИ относятся: кишечная палочка, протей, клебсиел

Ботулизм
Возбудителем заболевания является – Cl. Botulinum, который относится к семейству Bacillaceae, роду Clostridium. Основным фактором вирулентности является продукция экзотоксина – самый сильный из все


Материал для исследования: кровь, промывные воды желудка, рвотные массы, испражнения, остатки пищевых продуктов. Методы лабораторной диагностики

Патогенные кокки
Стафилококкиявляются возбудителями гнойничковых заболеваний кожи, фурункулов, абсцессов, флегмон. Наиболее часто стафилококковые заболевания наблюдаются у рожениц и новорожденных (

Факторы патогенности
1. мембраноповреждающие экзотоксины (повреждающие эритроциты, лейкоциты, макрофаги); 2. энтеротоксины- вызывают ОКИ; 3. эксфолиативный токсин- пузырчатка новорожденных; 4

Факторы патогенности
1. адгезия; 2. М-белок (нарушает процессы фагоцитоза- из-за сходства в строении с АГ сердечной и почечной ткани становится причиной аутоиммунных процессов, вызывает множественную активацию

Грамотрицательные бактерии
Гемофильная палочкаотносится к семейству Pasterellaceae, роду Haemophilus, виду Н. influenza. Это мелкие или средних размеров прямые палочки, неспорообразующие, неподвижные, грамот

Раневые анаэробные клостридиальные и неклостридиальные инфекции
Спорообразующие анаэробы (клостридии) относятся к отделу Firmicutes, семейству Bacillaceae, роду Clostridium. Клостридии–это грамположительные палочки, которые образуют ов

Неклостридиальные анаэробы
Входят в состав нормальной микрофлоры организма человека, являются условно-патогенными микроорганизмами. Вызывают гнойно-воспалительные заболевания, возникающие как эндогенная инфекция или послеопе

Коринебактерии
Коринебактерии относятся к семейству Corynebacteriaceae, роду Corynebacterium, виду C. Diphtheriae. Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен полиморфиз

Бордетеллы
Возбудителями коклюша и паракоклюша являются B. Pertussis и B parapertussis соответственно. Это мелкие кокковидные грамотрицательные палочки с закругленными концами биполярно окрашенные. Неподвижны

Менингококки
Менингококки относится к семей­ству Neisseriaceae, роду Neisseria, виду Neisseria meningitidis. Экологической нишей является слизистая оболочка носоглотки человека. Neisseria meningitidis

Микобактерии
Возбудитель туберкулеза относится к семейству Mycobacteriaceae, роду Mycobacterium, виду M. Tuberculosis. Это тонкие, слегка изогнутые палочки, спор и капсул не образуют. Туберкулезная палочка тяже

Легионеллы
Legionella pneumophila является возбудителем болезни легионеров (питтсбургской пневмонии, лихорадки Понтиак), относится к семейству Legionellaceae, роду Legionella и вызывает поражения респираторно

Возбудитель сифилиса
Сифилис – венерическая антропонозная инфекционная болезнь, характеризующаяся первичным аффектом, высыпанием на коже и слизистых оболочках с последующим поражением различных органов

Гонококки
Гонорея – это острое или хроническое инфекционное заболевание человека, которое передается половым путем и характеризуется гнойным воспалением слизистой оболочки мочеполовых путей.

Возбудители риккетсиозов
Риккетсии относятся к семейству Rickettsiaceae, которое относится к классу альфа-1 протеобактерии и включает 3 рода: Rickettsia, Orientia, Ehrlichia. Род Coxiella исключен из семейства Rickettsiace

Туляремия - природно-очаговое заболевание человека и животных, которое характеризуется лихорадкой, интоксикацией и поражением лимфатических узлов
Возбудитель туляремии отнесен к роду Francisella, виду F. Tularensis. Вид F. Tularensis подразделяют на 3 географических подвида, отличающихся по антигенным свойствам и вирулентности: 1) голарктиче

Бруцеллы
Бруцеллез – антропозоонозное инфекционное заболевание, которое характеризуется интоксикацией, преимущественным поражением опорно-двигательного аппарата, нервной, сердечно-сосудистой, мочепо

Возбудитель сибирской язвы
Сибирская язва – антропозоонозная инфекционная болезнь, которая характеризуется тяжелой интоксикацией, поражением кожи, лимфатических узлов, других органов и высокой летальностью.

Возбудитель чумы
Чума – острая инфекционная природно-очаговая болезнь, относящаяся к группе карантинных инфекций, характеризующаяся тяжелой интоксикацией, лихорадкой, поражением кожи, лимфатических узлов, л

Лептоспиры
Лептоспироз – заболевание, которое характеризуется волнообразной лихорадкой, интоксикацией, поражением капилляров печени, почек, ЦНС. Возбудитель заболевания–

Микробиологическая диагностика
Материалом для исследования являются кровь, моча, СМЖ, а при летальных исходах – паренхиматозные органы, грудной и брюшной транссудат. В период лептоспиремии (1-я неделя заболевания) для о

Плазмодии малярии
Малярия –антропонозная протозойная трансмиссивная болезнь человека, возбудители которой передаются комарами рода Anopheles. Характеризуется преимущественным поражением ретикулогист

Лейшмании
Лейшманиозы -группа трансмиссивных болезней человека преимущественно зоонозной природы. Существует две группы лейшманиозов человека: висцеральные, характеризующиеся преимущественны

Возбудитель амебиаза
Амебиаз – протозойный антропоноз, в клинически выраженных случаях проявляющийся преимущественно язвенным поражением толстого отдела кишечника, а также развитием абсцессов в печени

Патогенные грибы
Грибы относятся к царству Fungi. Это многоклеточные или одноклеточные бесхлорофильные эукариотические микроорганизмы с клеточной стенкой. Грибы имеют ядро с ядерной оболочкой, клеточную стенку, цит

Микробиологическая диагностика
В зависимости от клинических проявлений материалом для исследования являются: 1. кожные чешуйки, волосы, ногти 2. кровь 3. мокрота 4. СМЖ 5. моча

Вирусы гриппа
Относятся к семейству ортомиксовирусов, роду инфлюэнцавирус. Выделяют вирусы гриппа типов А, В, С. Вирус гриппа имеет сферическую форму, диаметр 80-120нм. Нуклеокапсид спиральной симметрии. Геном в

Парагрипп. РС-вирусы
Вирус парагриппа и РС-вирус (респираторно-синцитиальный) относятся к семейству парамиксовирусов. Это вирусы сферической формы со спиральным типом симметрии. Размер вириона составляет 100-800нм. Име

Аденовирусы
Семейство аденовирусов включает в себя два рода – Mastadenovirus (вирусы млекопитающих, которые патогенны для человека) и Aviadenovirus (вирусы птиц); в состав первого входит около 80 видов (серова

Риновирусы
Относятся к семейству пикорнавирусы. Это семейство относится к безоболочечным вирусам, содержащих однонитевую плюс РНК. Диаметр вируса около 30нм, вирион состоит из икосаэдрического капсида, окружа

Реовирусы
Реовирусы относятся к семейству реовирусов. Вирион имеет сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа, оболочки нет. Геном представлен двунитевой фрагментированной

Вирусы кори и паротита
Вирус эпидемического паротита и вирус кори относятся к семейству парамиксовирусов. Вирион парамиксовирусов имеет сферическую форму, диаметр 150-300 нм, окружен оболочкой с гликопротеиновыми шипами.

Вирус герпеса
Семейство Герпесвирусы (Herpesviridae) включает 3 подсемейства: · альфагерпесвирусы (вирус простого герпеса тип 1, тип 2, вирус ветряной оспы – опоясывающего герпеса).

Вирус краснухи
Краснуха – вирусная инфекция, поражающая преимущественно детей в возрасте от 2 до 10 лет и характеризующаяся у них острым, но доброкачественным течением с умеренно выраженными лихо

Возбудитель натуральной оспы
Натуральная оспа –особо опасная высококонтагиозная инфекция, характеризующаясятяжелым течением, лихорадкой и обильной пустулезно-папулезной сыпью на коже и слизистых оболочках.

Вирус полиомиелита
Полиомиелит –острое инфекционное заболевание с поражением передних рогов спинного мозга, которое характеризуется развитием параличей с мышечной атрофией. Вирус относится к

ЕСНО-вирусы. Вирусы Коксаки
Относятся к семейству пикорнавирусов, роду энтеровирусов. Строение вириона такое же, как у вируса полиомиелита. ЕСНО вирусы выделены в особую группу кишечных вирусов вслед

Возбудитель ВИЧ-инфекции
ВИЧ-инфекция – длительно текущая инфекционная болезнь, развивающаяся в результате инфицирования вирусом иммунодефицита человека. При ВИЧ-инфекции прогрессирует поражение иммунной системы, п

Факторы патогенности
1. вирус обладает лимфотропностью, благодаря тому, что на лимфоцитах Т-хелперах существуют в норме рецепторы СД4, имеющие сродство к белку gp 120 ВИЧ. 2. поражает не только Т-хелперы, но и

Рабдовирусы
Бешенство (водобоязнь, гидрофобия- rabies, lysa, hydrophobia) – острая инфекционная болезнь, развивающаяся после укуса или ослюнения раны инфицированным животным, характеризующаяся поражением центр

Флавивирусы
Клещевой энцефалит – острое инфекционное заболевание, передающееся клещами, часто протекающее с поражением центральной нервной системы. Этиология. Вирус клещевого энцефали

Хантавирусы
ГЛПС –острое вирусное природно-очаговое заболевание в клинике которого ведущим является своеобразное поражение почек, сопровождающееся в разной степени выраженным геморрагическим с

Возбудители вирусных гепатитов
Вирусные гепатиты – группа инфекционных заболеваний, вызванных гепатотропными вирусами (А, В, С, Д, Е, G, TTV), при которых воспалительные и некротические процессы в печени определя

Вирус гепатита А
Вирус гепатита А относится к РНК-содержащим вирусам, семейству пикорнавирусов, роду гепатовирусов. Он относится к безоболочечным вирусам, содержащим однонитевую плюс РНК. Антигенная структ

Вирус гепатита В
Вирус гепатита В относится к семейству гепадновирусы, роду ортогепадновирус. Является сложноорганизованным ДНК-содержащим вирусом сферической формы, диаметр 42-47 нм. Он состоит из сердцевины, пост

Гепатита В и их интерпретация
HВsAг HВeAг анти- HВecor IgM анти HВecor сумм анти HВe Анти HВs HBV ДНК Тр

Вирус гепатита С
Вирус гепатита С относится к семейству флавивирусы, роду гепацивирус. Это сложные РНК геномные вирусы сферической формы, их диаметр 40-60 нм. Геном состоит из линейной однонитчатой плюс-нитевой РНК

Папилломавирусная инфекция
ВПЧ – мелкие ДНК-овые вирусы, характерная особенность которых заключается в способности вызывать пролиферацию эпителия кожи и/или слизистых оболочек. Они относятся к семейству паповавирусов. Сущест

Работа всех систем в организме непрерывна. В нём постоянно протекают сложные химические реакции, обеспечивающие нормальную жизнедеятельность. Одним из самых важных процессов является обмен веществ и энергии, то есть метаболизм.

Именно благодаря ему, клетки сохраняют постоянство состава, растут, функционируют, а также обновляются. Процесс этот непростой и состоит из двух видов обмена - пластического и энергетического, которые, в свою очередь, имеют несколько стадий.

Вконтакте

Одноклассники

В организме непрерывно происходит как расщепление сложных веществ на более простые, так и синтез необходимых соединений из различных элементов. В результате первого типа реакций, который называется энергетическим обменом, или катаболизмом, тело человека получает необходимую для нормального функционирования энергию. Но её часть расходуется на создание новых соединений, которые нужны для жизнедеятельности. Такой процесс носит название пластического обмена, или анаболизма.

Энергетический обмен

Катаболизм , называемый также диссимиляцией , происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые уже нельзя использовать.

Этот процесс аналогичен горению, ведь в его результате выделяются те же вещества. Но он происходит с куда большей скоростью и не нуждается в высоких температурах. Кроме того, важным отличием является то, что энергия не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд организма. Это делает процесс невероятно эффективным и уникальным.

Распад веществ для получения организмом энергии - это то, что характеризует энергетический обмен в клетке. Происходит он в несколько стадий:

  • подготовительная;
  • неполная (анаэробное дыхание);
  • аэробное дыхание.

Каждая из этих стадий имеет свои особенности и играет важную роль в метаболизме в целом. Далее будет более подробно рассказано про каждую из них.

Подготовительный этап

Единственная из стадий, которая протекает в желудочно-кишечном тракте. Она заключается в пищеварении, то есть распаде сложных органических соединений на простые. Распад у сложных организмов осуществляется под действием пищеварительных ферментов, а у одноклеточных - с помощью лизосом. При этом белки распадаются на аминокислоты, жиры - на алифатические карбоновые кислоты и глицерин, углеводы - на сахариды, нуклеиновые кислоты - на нуклеотиды .

При всех этих процессах дополнительно выделяется энергия в виде тепла, но не в самых больших количествах. Далее процессы происходят на клеточном уровне.

Анаэробное дыхание

Эта стадия называется также гликолизом применительно к царству животных, или брожением , если имеются в виду растения и микроорганизмы. Весь процесс происходит в цитоплазме клеток за счёт работы ферментов.

Он продолжает предыдущую стадию тем, что из моносахарида, коим является глюкоза, выделяются ещё более простые вещества - спирт и углекислый газ, а также кислоты.

Этот вид обмена универсален для всех организмов и используется даже в повседневной жизни. Поскольку он протекает и в бактериях, его широко применяют в пищевой промышленности: дрожжи производят этиловый спирт, кисломолочные бактерии - молочную кислоту, а животные клетки - пировиноградную. В некоторых микроорганизмах выделяется ацетон и этановая кислота.

При этом также выделяется энергия, часть которой запасается в двух молекулах аденозинтрифосфата (АТФ), и некоторое количество рассеивается с выделением тепла. Но двух молекул АТФ недостаточно для полноценной работы организма, поэтому за анаэробным этапом последует кислородное расщепление.

Аэробное дыхание

Другие названия этого этапа - клеточное дыхание , или кислородное расщепление . Как видно из названия, процесс невозможен без кислорода, который выступает в роли окислителя продуктов распада глюкозы. Помимо кислорода, в работе участвует фосфорная кислота и аденозиндифосфат (АДФ). Под действием ферментов они без повышения температуры моментально сжигают органические вещества до углекислого газа и воды.

Благодаря окислению из одной молекулы вещества (образовавшиеся на предыдущем этапе молочная, пировиноградная кислоты и так далее) клетка получает 18 АТФ, каждая из которых служит мощным источником энергии. Этот этап происходит в митохондриях клетки и является самым важным во всём энергетическом обмене, так как обеспечивает клетку большим количеством АТФ.

Пластический обмен

Пластический обмен ещё называется анаболизмом, ассимиляцией и биосинтезом. Он является не менее важной составляющей метаболизма, ведь именно пластический обмен в клетке характеризуется синтезом новых веществ, что обеспечивает образование ферментов, гормонов, а также белков, липидов и других веществ, участвующих в построении клеток, межклеточного пространства и других составляющих организма. Так же, как и энергетический обмен, он является сложным и протекает во многих организмах. Далее будут приведены примеры и процессы пластического обмена.

  • , который свойственен растениям, а также некоторым бактериям. Они называются автотрофами, поскольку способны самостоятельно синтезировать необходимые для жизни органические вещества из неорганических соединений.
  • Хемосинтез протекает у бактерий, называемых хемотрофами. И они также могут обеспечивать себя необходимыми органическими соединениями. Для их жизнедеятельности не нужен кислород, они используют диоксид углерода.
  • Биосинтез белков осуществляется в живых организмах. К ним относятся и гетеротрофы, которые, в отличие от двух предыдущих упоминаемых форм, неспособны самостоятельно обеспечивать себя органическими веществами, а поэтому получают их с помощью других организмов.

Остановимся на этих процессах более подробно.

Процесс, без которого не была бы возможна жизнь на Земле. Многим формам жизни для дыхания нужен кислород взамен выдыхаемого ими в воздух углекислого газа. Этим важным веществом нас обеспечивают растения, в зелёных листьях которых содержатся хлоропласты. Их окружает пара мембран, поскольку внутри хлоропласта в цитоплазме содержатся ценные граны с собственными защитными оболочками. В этих стопках тилакоидов, в свою очередь, присутствует хлорофилл, отвечающий за цвет растения, но главное - делающий процесс фотосинтеза возможным.

Осуществляется он посредством соединения шести молекул углекислого газа с водой, в результате чего образуется глюкоза. Побочным продуктом реакции является жизненно необходимый кислород. Процесс возможен только на свету, при использовании солнечной энергии.

Хемосинтез

Хемосинтез протекает у микроорганизмов, также способных к самостоятельному преобразованию неорганических соединений в органические. К ним относятся:

Окисление углекислого газа происходит без участия кислорода, с использованием запасённой ранее энергии. Из диоксида углерода синтезируются органические вещества, необходимые для жизнедеятельности.

Биосинтез белков

Сложный процесс, направленный на разложение попадающих в организм белков на составляющие, из которых впоследствии синтезируются собственные уникальные белки. Состоит из двух стадий.

Транскрипция - процесс, состоящий из трёх этапов (образование транскрипта, процессинг, сплайсинг), которые происходят в ядре клетки. Они направлены на создание информационной РНК (иРНК) из ДНК. В результате новый полимер полностью копирует небольшой участок нити ДНК с той разницей, что тимину в нём эквивалентен урацил.

Трансляция - перенос информации с синтезированной на предыдущем этапе молекулы РНК на строящийся полипептид с указаниями о его будущей структуре. Процесс происходит на рибосомах, расположенных в цитоплазме клетки. Они имеют овальную форму и состоят из частей, которые могут соединяться только при наличии иРНК. Сам перенос информации осуществляется в несколько этапов.

Итак, все вещества, поступающие в живой организм, распределяются в нём так, чтобы приносить ему пользу. Сложные распадаются с выделением энергии, необходимой для дальнейшей жизнедеятельности (например, выполнение физической или умственной работы человеком), запасаемой в АТФ. А из простых веществ организм синтезирует новые соединения с использованием энергии, накопившейся в универсальном источнике - молекуле той самой АТФ. При этом энергия не расходуется безвозвратно - она запасается в новых соединениях.

Диссимиляция и ассимиляция в корне отличаются друг от друга, но при этом они неразрывно связаны. Ведь именно катаболизм даёт энергию, без которой невозможен анаболизм, то есть синтез необходимых организму веществ. Вот почему эти два процесса являются очень важными.