Как сделать действующую модель ракеты

Запускать модели ракет - довольно интересное зрелище. Ракета, выпуская огромные клубы дыма, шипя, взлетает на высоту 300-400, а то и больше метров, затем - хлопок, раскрывается маленький парашютик и она плавно покачиваясь, опускается на землю.

Форма модели ракеты может быть самая разная, напоминающая, например, известные ракеты «Гирд», «Восток», "Союз", зенитной ракеты «Земля-воздух», это отечественного производства, или зарубежные - «Вероника» (французская), «Астроби», «Аэроби-хай», «Сатурн» (американские), «Метеор» (польская) и другие, возможно собственной конструкции.

Чтобы ракета повыше взлетела, она должна быть максимально легкая. Поэтому, материал для изготовления моделей ракет - это бумага (ватман), бальза, легкие породы древесины, тонкая длинноволокнистая бумага, пенопласт и др.

Модели ракет изготавливают одно-, дво- и многоступенчатые, т.е. с одним, двумя и несколькими двигателями. Рассмотрим более простой вариант, одноступенчатую.

Процесс изготовления модели ракеты (см. рисунок) нужно начинать с корпуса. Берем стапель (трубку или круглый стержень) диаметром ЗО мм и накручиваем на него один слой ватмана. Корпус склеиваем силикатным клеем. Ширина склейки 10 мм. Корпус закатываем на стапеле.

Склеенный корпус нужно снять на несколько минут, чтобы клей подсох. После этого виклеєний корпус насаждаем на стапель и оставляем к полному высыханию.

У высохшего корпуса обрезаем на стапеле остатки его длины к нужным размерам согласно рисунком. Место склеивания заравниваем с корпусом мелкозернистой наждачной бумагой, заботясь о том, чтобы не протереть до осветления или дыр, и обтягиваем одним слоем тонкой длинноволокнистой бумаги.

Затем покрываем корпус модели ракеты эмалитом, когда первый слой высохнет, корпус покрываем еще тремя. После полного высыхания эмалиту, как корпус уже не будет пахнуть им, нитями приматываем верхнее металлическое направляющее кольцо и снимаем корпус модели из стапеля.

Верхнее направляющее кольцо изготовляем из провода перерезом к одному миллиметру или из обычной канцелярской скрепки немного большего сечения, чем направляющая, которая будет применена для запуска данной модели ракеты.

В нижней части корпуса приклеены три стабилизатора, изготовленного из бальзы, толщиной 3 мм, которые делаем обтекаемой формы. Стабилизаторы обклеиваем с обеих сторон одним слоем тонкой длинноволокнистой бумаги.

К корпусу они приклеены под углом 120°. Место склейки надо усилить за счет бумажных уголков размером 15x40 мм, наклеенных на корпус модели ракеты и стабилизаторы густым эмалитом.

Нижнее направляющее кольцо изготовляем из бумаги и приклеиваем к одному из стабилизаторов, а верхнее направляющее кольцо (металлическое) приматываем над нижним. При этом нужно следить, чтобы центры металлического и бумажного колец лежали на одной прямой.

Сердцем любой ракеты конечно же является реактивный двигатель, в нашем случае твердотопливный. Згорая, топливо выделяет большое количество газов, которые и создают реактивную тягу вылетая из сопла. Такие двигатели изготавливаются в пиротехнических мастерских и раньше были в продаже, сейчас не знаю. Изготавливать их самостоятельно я бы не советовал, т.к. это не безопасно, хотя в некоторых авиамодельных кружках опытные специалисты это делали.

Для закрепления в корпусе модели ракеты стандартного заводського реактивного двигателя, который работает на твердом топливе с импульсом до 10 н/сек, из пенопласта НХВ изготовляем втулку длиной 25 мм, внешним диаметром 30 мм и внутренним диаметром 20,5 мм. Вклеиваем втулку в нижнюю часть корпуса силикатным клеем.
При работе с пенопластом ни в коем случае нельзя пользоваться нитроклеями и нитрокрасками, т.к. они растворяют его и можно испортить деталь.

В верхней части корпуса модели ракеты вставлена главная часть - обтекатель, изготовленный из пенопласта ПХВ на токарном станке. Он должен входить в корпус модели свободно, чтобы не утруждать выброски парашютика. Обтекатель обклеиваем длинноволокнистой бумагой, смазанным тоже силикатным клеем. Через обтекатель пропущена круглая резина-амортизатор авиамодели, один конец которой привязан к верхнему металлическому кольцу, а второй к стабилизатору. К середине амортизатора привязанные стропы парашюта.

Купол парашюта делаем из тонкой длинноволокнистой бумаги и являет собой многогранник, вписанный в круг радиусом 750 мм, к которому приклеены стропы из нитей № 10, что имеют длину 1500 мм. Пыж для выталкивания парашюта изготовляем из пенопласта ПХВ размером 30x30 мм в виде цилиндра и обклеиваем бумагой.

Чтобы ракета в полете была устойчивая, необходимо обратить особенное внимание на расположение центра веса (ЦВ) и центра давления (ЦД). ЦВ должен находиться на три сантиметра выше от центра давления. Правильность центровки достигается местом расположения парашюта внутри корпуса модели, или догрузкой носовой части, например свинцом или изготовив ее из дерева, можно уменьшить вес двигателя, но это более проблематично.

Понятно, ЦВ мы можем менять вдоль оси ракеты, а как найти ЦД? Для этого надо вырезать, из картона, плоский контур в натуральную величину модели ракеты и методом балансирования найти центр веса контура. В этой точке и будет находится центр давления будущей ракеты, это где-то в 33% от нижней части. Затем эту точку перенести на реальную модель. Вот такой примитивный метод.

Для ориентировки - полетный вес модели одноступенчатой ракеты составляет примерно 80 грамм, двухступенчатой - 120 гр.
Запускать такую ракету надо на стартовой установке, которая оборудована направляющим штырем, на который одевается ракета, и электрозапуском (электроподжигом) с растояния не менее 10 метров.

Как видите, сделать такую ракету не сложно, главное раздобыть двигатель для нее. Можно немного импровизировать, изменить к примеру форму обтекателя, или стабилизаторов, разкрасить ее по своему, но чтобы ракета была устойчивая в полете, приведенные выше расчеты надо соблюдать.

Теперь немного об электрозапале ракеты, его можно сделать самому из нихромовой или вольфрамовой проволоки диаметром 0,1-0,2 мм. Подойдет, например, из старого паяльника. Берем кусок такой проволоки и наматываем ее на тоненькую иголку (до 1 мм), сопротивление должно быть в районе 2 Ом. Запитываем такой запал от батареек или аккумуляторов 4,5-6 В. Для каждого запуска лучше применять новый запал.
Вот собственно и все, удачного старта.

Из чего и как сделать ракету своими руками, расскажут наши интересные и познавательные мастер-классы, снабженные схемами деталей и пошаговым описанием процесса. Простор для творчества тут очень велик, а для работы требуются такие простые и доступные позиции, как бумага, картон, пластиковые бутылки, спички, фольга и прочие подручные материалы. Модель можете быть исключительно сувенирной и потом использоваться в качестве подарка кому-то из близких и друзей. Ну, а для самых любознательных и креативных мы приготовили уроки, описывающие создание ракеты которая летает. Ее тоже делать совсем несложно, однако, запуск допустим только на открытом воздухе и только при соблюдении элементарных правил безопасности.

Как сделать ракету своими руками, чтобы она летала – простой мастер-класс для детей

Этот простой и доступный мастер-класс научит ребенка делать своими руками летающую ракету из бумаги. Для работы понадобится минимум материалов, но, тем не менее, для того, чтобы все получилось, как нужно, придется проявить внимание и аккуратность. Чем ровнее и четче будут линии сгиба, тем аэродинамичней окажется поделка и тем дальше сможет улететь.

Необходимые материалы для изготовления летающей ракеты своими руками

  • лист бумаги формата А4
  • ножницы
  • резинки для денег

Пошаговая инструкция, как детям сделать своими руками летающую ракету

Как сделать ракету из картона своими руками – схемы деталей и процесс работы

Следуя рекомендациям этого мастер-класса можно сделать своими руками объемную и красивую тематическую игрушку – космическую ракету из картона и цветной бумаги. К уроку прилагаются не только подробное описание и пошаговые фото, но и схемы, по которым будет легко вырезать важные мелкие детали.

Необходимые материалы для изготовления своими руками картонной ракеты

  • набор цветной бумаги
  • картон цветной односторонний
  • втулка от бумажных полотенец
  • ножницы
  • степлер
  • линейка
  • карандаш
  • ПВА строительный
  • атласная тесьма ярких цветов

Пошаговая инструкция, как сделать из картона и бумаги космическую ракету


Как сделать ракету из бутылки, чтобы она взлетела высоко – видео

В этом видео-ролике авторы – папа и сын – рассказывают, как сделать в домашних условиях ракету из пластиковой бутылки. В работе используются самые обычные материалы, находящиеся всегда под рукой. Весь процесс показан очень подробно, а целесообразность каждого действия понятно и доступно объясняется. Особенный момент, на который делается акцент, это безопасность изготовления и дальнейшего запуска, а это чрезвычайно важно, как для взрослых, так и для детей.

Как сделать космическую ракету своими руками из бумаги в домашних условиях

В домашних условиях из самой обычной бумаги можно сделать своими руками настоящую космическую ракету. Работа не слишком сложна, но требует аккуратности и внимания. Дети школьного возраста легко справятся с этим заданием сами, а малышам из детского сада пригодится небольшая помощь воспитателей, родителей или старших братьев либо сестер.

Необходимые материалы для космической ракеты из бумаги

  • лист бумаги
  • изолента
  • ножницы
  • клеевой пистолет (либо клей ПВА)
  • пластиковая пустая трубочка от шариковой ручки

Пошаговая инструкция для изготовления в домашних условиях ракеты из бумаги

  1. Из листа бумаги выкроить два кусочка одинаковой длины и шириной приблизительно 5 сантиметров.
  2. К одному фрагменту бумаги прикрепить небольшой кусочек изоленты и несколько раз обернуть этим пластиковую трубочку от шариковой ручки. Стараться натягивать бумагу равномерно, чтобы она аккуратно облегала пластиковую основу. Это станет корпусом будущей ракеты.
  3. Край бумаги закрепить изолентой, чтобы в будущем он не развернулся. Возможные неровности осторожно срезать канцелярскими ножницами.
  4. Отрезать небольшой кусочек изоленты и закупорить им корпус ракеты с одной стороны.
  5. Из изоленты вырезать три кусочка длиной примерно по 6-7 сантиметров. Каждый из них сложить пополам, но до самого конца не склеивать. Ножницами обрезать край под углом 45 градусов и прикрепить к хвостовой части ракеты. Это будут стабилизаторы.
  6. Оставшуюся половинку бумаги свернуть в форме конуса и обернуть для прочности изолентой.
  7. От носовой части ракеты срезать небольшой кусочек.
  8. Наполнить конус клеевым раствором на ¾ и вставить туда закупоренную часть основание ракеты. Некоторое время подержать конструкцию в таком положении, чтобы клей схватился и детали приобрели цельность. Готовую работу поместить на ровную поверхность или картонную подставку.

Как сделать ракету из спичек и фольги – мастер-класс

Этот простой и доступный мастер-класс объясняет, как сделать в домашних условиях ракету из спичек и фольги. Для работы требуются самые простые материалы, а сам процесс занимает буквально несколько минут. Потом импровизированный летательный аппарат можно даже запустить, однако, следует помнить, что такие мероприятия нужно проводить только на открытом воздухе и, желательно, в присутствии взрослых.

Необходимые материалы для изготовления ракеты из фольги и спичек

  • спички кухонные – 1 коробок
  • фольга
  • канцелярская скрепка (или проволока)
  • иголка (или английская булавка)
  • ножницы

Пошаговая инструкция к мастер-классу по созданию своими руками ракеты из спичек

  1. Лист фольги разложить на столе, выкроить из него небольшой фрагмент размером 5Х10 сантиметров и вырезать ножницами.
  2. Обычную спичку и иголку сложить вместе так, чтобы острый кончик иглы прилегал к месту, где спичка покрыта серой.
  3. Затем обмотать конструкцию предварительно заготовленным кусочком фольги с того края, где располагается сера. Действовать очень аккуратно и внимательно. Следить, чтобы головка с серой была полностью закрыта фольгой и внутрь не проникал воздух.
  4. После всех этих операций очень осторожно вытащить иголку, стараясь не повредить целостность фольгового слоя. В результате образуется небольшое отверстие, через которое сможет выйти создающийся в момент сгорания газ, и ракету получится запустить в полет.
  5. Для подставки у прочной и крепкой канцелярской скрепки отогнуть в сторону сердцевинку.
  6. Закрепить ракету на подставке и оставить в таком положении. Если работа несет исключительно сувенирный характер, ее можно поместить в шкаф под стекло или поставить на столе (либо на любой другой ровной и надежной поверхности). Когда же в планы входит запуск, следует помнить, что осуществлять его можно только на улице с соблюдением элементарных правил безопасности.
  7. Для отправки в полет достаточно разместить ракетную установку на ровной поверхности, зажечь еще одну спичку и поднести огонь туда, где фольга прикрывает серу.

Итак, вы прочли последние новости об Илоне Маске или Джеффе Безосе (главе Amazon - прим. перев.), а может покопались в книгах по истории и поняли, почему Роберт Годдард и Вернер фон Браун стали легендами. И тут вам в голову пришла гениальная мысль - а почему бы не заняться ракетостроением самостоятельно?

Должен отметить, что текст ниже - это всего лишь подход теоретика-астрофизика к созданию ракет, и в нем, очевидно, не хватает многих... ну, давайте просто назовем их «критически важными деталями». Ракеты - одни из самых сложных творений, которые когда-либо создавались человечеством, и они требуют малость большего описания для их постройки, чем дает эта статья, так что мое уважение инженерам, которые на самом деле проектируют и строят их.

Тем не менее, ракеты полагаются на некоторые удивительно простые физические принципы. Хотя шаги ниже точно не дадут вам полноценного ракетного двигателя, они пояснят, почему мы делаем ракеты так, как мы делаем, и никак иначе.

Шаг первый: сохранение импульса

При движении по поверхности Земли или по воздуху мы полагаемся на сохранение импульса, чтобы двигаться вперед. Когда мы отталкиваемся от земли или машем крыльями в воздухе, то земля или воздух в свою очередь отталкиваются от нас. Поскольку Земля несколько больше нас, сохранение импульса означает, что мы сдвигаемся сильно, а вот Земля - едва ли.

Но космос - это совсем другая история. В этом холодном вакууме не на что давить. Ноги, крылья, пропеллеры и самолеты бесполезны. Но это не означает, что сохранение импульса внезапно перестает работать. Вместо этого, чтобы двигаться вперед, нам, по сути, нужно взять импульс с собой.

Тут тот же принцип, что и в том случае, когда вы находитесь на льду озера или в офисном кресле на колесиках. Если вы возьмете часть массы, которую вы носите с собой (обувь, снежок - что угодно), и отбросите ее от себя, то вы немного проедете в противоположном направлении. Конечно, то, что вы выкинули, имеет вес сильно меньше вашего, поэтому вы проедете в обратном направлении на достаточно небольшое расстояние, но все еще вам удалось сдвинуться, используя только самого себя.

Итак, чтобы иметь летающую в космосе ракету, вам нужно возить с собой ракетное топливо. Оно может быть любым, и когда вы его выбросите через заднюю часть ракеты, вы пролетите немного вперед. Прогресс!

Шаг второй: плывите по течению

Но стратегия «положить топливо в ракету и проделать дырку на задней ее стороне», вероятно, будет не самой эффективной. Вот почему вам нужно заменить свое отверстие соплом: в частности, соплом де Лаваля, названным в честь его изобретателя. Конкретно это сопло сужается до узкой горловины, а затем расширяется в куполообразную камеру, где выходное отверстие намного шире, чем входное. Уникальная форма сопла делает что-то волшебное с потоком ракетного топлива, что привело Годдарда в восторг в начале 1900-ых.

Когда топливо попадает в узкую горловину, оно ускоряется. Это происходит потому, что жидкость крайне плохо сжимается - для этого требуется гигантское давление, но его в сопле нет. Таким образом, чтобы общая масса жидкости протекала с одинаковой скоростью, она должна преобразовываться с «широкой и медленной» на входе в «узкую и быструю» посередине. Каждое вещество имеет свою собственную скорость звука (скорость, с которой распространяются звуковые волны в нем), и если вы правильно настроите горловину сопла, жидкость станет звуковой в момент перемещения по ней.

А звуковые и сверхзвуковые жидкости обладают особым свойством, которое прямо противоположно их дозвуковым собратьям: вместо замедления при повторном расширении из-за сложной динамики жидкости они... ускоряются. Поэтому, когда такая жидкость выходит из сопла, она получает дополнительный импульс. Кроме того, специальная куполообразная форма сопла на выходе позволяет жидкости продолжать прижиматься к его корпусу, еще больше увеличивая итоговый импульс.

Шаг третий: повинуйтесь тирании

Итак, у вас есть топливо и сопло. Что осталось? Правильно, вам нужно что-то, чтобы привести все это в действие: источник энергии, который вам также нужно упаковать с собой. В случае бросания вещей на скользком льду вы принесли свою энергию в виде завтрака, который вы употребили раньше и хранили для последующего использования.

Но зерновые и молоко - не самый лучший источник энергии для космической энергетики, поэтому химические ракеты оказались настолько успешными. Создавая мощную смесь топлива (например, высокоочищенный керосин) и окислителя (например, кислород), можно высвободить и использовать невероятные объемы энергии в последующих экзотермических реакциях. Разумеется, имеются и другие комбинации, и в некоторых случаях топливо самовоспламеняется при правильных условиях или существует в твердой форме перед использованием по назначению.

В любом случае, результат тот же. Еще одна полезная «фишка» химических ракет заключается в том, что смесь топлива служит в качестве движителя - результаты энергетических реакций «запихиваются» в сопло де Лаваля, толкая ракету вперед. Это здорово.

Но тот факт, что вы должны нести свой собственный источник топлива и энергии, резко ограничивает то, что может сделать ракета. Это регулируется формулой Циолковского - простой связью между энергией, необходимой для достижения цели, энергией, запасенной в топливе, и долей общей массы ракеты, занятой топливом.

Если вы хотите улететь дальше или поднять более тяжелый объект на орбиту, вам нужно больше топлива. Но увеличение объемов топлива увеличивает и общий вес ракеты, и именно эта «тирания» объясняет, почему современные ракеты имеют от 80 до 90 процентов топлива по массе - все для того, чтобы вывести совсем небольшую полезную нагрузку в космос. Поэтому и используют многоступенчатые ракеты - убирая используемые ступени, вы тем самым уменьшаете общий вес ракеты, а, значит, ускорение от следующей ступени будет более эффективным.

Можете улетать

Что в итоге? У вас есть все необходимые компоненты ракеты: сохранение импульса, ракетное топливо, сопло причудливой формы и источник энергии. И все, даже самые нестандартные ракеты, следуют тем же основным принципам. Соплом могут быть электрические или магнитные поля, а источником энергии - топливо, ядерные реакции или само Солнце. Но, несмотря ни на что, шаги выше - единственный способ получить ракету в космосе.

Поделка ракета весьма актуальна в преддверии 23 февраля и 12 апреля, впрочем, и во все остальное время мальчишкам и девчонкам, которые увлекаются космосом, будет интересно освоить такие «мастерилки». Мы расскажем вам, и многих других материалов.

Ракета из бумаги - поделка

Данная поделка покорится деткам 5-7 лет, ее можно использовать для сюжетно-ролевых игр, декорирования интерьера, такой космический корабль с элементами аппликации можно преподнести в качестве презента для родственников. Подобное времяпрепровождение будет также очень полезно для деток, ведь оно будет закреплять знание порядкового счета, размера, геометрических фигур. Также изготовление подобной "мастерилки" будет развивать глазомер, зрительную память и координацию движений.

Сложите пополам лист цветной бумаги, полученный прямоугольник по линии сгиба разрежьте. Возьмите одну половинку и сверните, чтобы получился цилиндр.

Зафиксируйте лист в таком положении, орудуя клеем-карандашом. Вторую половинку следует трансформировать в конус, точно так же закрепляя клеем-карандашом. Края подрежьте по кругу аккуратненько - это поможет конструкции стать более устойчивой.

Возьмите три квадрата белой бумаги и смастерите скручиванием три цилиндра. На белом квадрате нарисуйте иллюминатор - небольшой круг простым карандашом. Аккуратно вырежьте иллюминатор, не забыв напомнить ребенку про правила обращения с режущими предметами.
Приклейте иллюминатор к цилиндру, который вы смастерили самым первым.
Приступайте к сборке космического транспортного средства: носовую часть зафиксируйте, затем приступайте к оформлению "хвоста" - в нижней части большого цилиндра зафиксируйте тройку маленьких.

Как сделать поделку ракету в технике оригами

Вариант № 1

Такая поделка прекрасно подойдет для празднования Дня космонавтики. Выполняется она в технике модульного оригами и покорится уже более старшим детям. Подготовьте для складывания 10 шт бумажных квадратов со стороной 10 см.

Квадрат сложите таким образом, чтобы получилась пара прямоугольников, потом - четыре квадратика. Четыре угла заломите к середине, фигуру переверните и четыре угла заверните к середине. Вновь подогните уголки к середине, но уже не все, а только верхнего слоя, в это время слой-подложка должен выйти вперед. Вот так вы и сделали модуль под названием "звезда в квадрате". Вставьте готовые модули один в другой, склеивая их. Склейте нижний ряд, состоящий из четырех "звезд в квадрате". Наверх приклейте еще три рядочка, а потом соедините еще и весь корпус. Конечно же, не обойтись без носа летательного средства - для этого сверните бумажный конус.

В качестве дополнения можно смастерить и ножки, приклеивая к основанию модули. Вот у вас и получилась замечательная ракета-оригами!

Вариант № 2

Начните сборку оригами-ракеты с подготовки формы. Нарисуйте или наклейте иллюминаторы.

Соберите в столбики треугольные модули выложите по контуру летательного средства. Если в дальнейшем вы не планируете разбирать конструкцию, то следует приклеить крайние модули к бумаге. Некоторые заготовки следует раскрыть и именно в таком виде добавить к конструкции.

Итак, "мастерилка" готова, если желаете, то еще можете подобрать подходящий фон со звездами.

Детская поделка ракета

Огромное значение для детского развития имеет процесс лепки, ведь такое занятие полезно и для мелкой моторики, и для внимания, и для усидчивости. Конечно же, подарит лепка детям и радость творчества.

Пусть ребенок выберет нравящийся ему пластилиновый брусочек, его нужно будет покатать на лоске, чтобы брусок приобрел овальную форму. Закрепите его вертикально на доске, сплющивая один конец, а второй сдавите и вытяните, чтобы конец стал заостренным.

Возьмите другой брусок и скатайте небольшие шарики, прикрепите их к корпусу, располагая в ряд. Еще один брусок пригодится для скатывания длинной колбаски, ее нужно будет разделить на четыре одинаковые части - это будут ножки. Прикрепите ножки к сплющенному концу космического корабля.

Для изготовления двери скатайте овал небольшого размера, сплюсните его и прикрепите к нижней части "самоделки". К заостренной части прикрепите пластилиновый кусочек другого цвета.

Поделка ракета своими руками - открытка

На 23 февраля или же на День космонавтики ребенок сможет смастерить замечательную открытку-ракету, в которой будут очень красиво сочетаться приемы аппликации, пластилинографии и оригами. Данный мастер-класс предназначается для деток 5-7 лет.
На листе желтой бумаги начертите линии толщиной 1 см (задействуйте линейку и карандаш, чтобы линии получились ровными). Бумажные полоски вырежьте аккуратненько.

Сверните пополам белый квадрат со стороной 8 см, верхнюю часть фигуры на 2 см заверните к центру, также к нему сверните и верхние правый и левый уголки, чтобы образовался "домик". Вновь сверните правый край по направлению к центру, оставляя без изменения "крышу". Аналогичную манипуляцию проделайте и с другой стороны "мастерилки".

Приступите к открыванию "дверок" домика: отогните на середине от центра вправо, края дверцы прогладьте тщательно и аккуратно. С левой частью "дома" поступите аналогично - вот у вас и получится оригами-ракета. Приклейте ее за носик и крылышки на лист цветного картона. Для работы лучше всего использовать клей-карандаш.

Следующим этапом будет оформление хвостовой зоны космического аппарата - для этого желтую бумажную полоску сверните гармошкой. К хвостовой части приклейте заготовочки в количестве трех штук. При этом клеем следует промазывать только лишь оба конца полосок, это позволит поделке быть более воздушной.

В верхней части ракеты прорисуйте фломастером иллюминатор. Для изготовления облаков скатайте в шарики небольшого размера вату, приклейте, используя клей ПВА. Для украшения неба задействуйте пластилин разнообразных оттенков - скатывайте крошечные шарики и в хаотичном порядке прикрепляйте. Вот и готова замечательная открытка.

Поделка ракета из бутылки

Форма пластиковой бутылки идеально подходит для подобного творчества, вот почему непременно задействуйте данный бросовый материал, который найдется в каждом доме.

Первым делом у пластиковой бутылки следует отрезать донышко и отложить в сторону - для работы оно уже не понадобится. Нанесите окружность на поверхность пластика и вырежьте иллюминатор.

Смастерите картонный конус, который будет играть роль ракетного носа, приклейте его на горлышко сосуда. Картон также пригодится для вырезания окантовки иллюминатора и оперения, также скрутите дюзы из кусочков картона.

Выкрасьте ракету и все элементы в нужные цвета, дождитесь полного высыхания. Приклейте недостающие элементы. Не забудьте про пламя, которое вырывается из сопла - для этой цели используйте тоненькие полосочки папиросной бумаги. Вот и готова ракета из бутылки своими руками - поделка такая займет достойное место на любой выставке.

Вам также будут интересны , там можно поместить любые фигурки - животных, растений, предметов.

А вот еще один необычайно интересный вариант - водяной. Кстати, мы расскажем вам, как можно запускать такое летательное средство. Сделайте конус из обычной цветной бумаги зеленого цвета. Радиус должен быть достаточно большим, ведь этот конус впоследствии должен будет налезть на пластиковую бутылочку. Конечно же, эту деталь нужно будет зафиксировать, чтобы она не размоталась в самый ответственный момент. Для этого весь конус обмотайте скотчем, чтобы деталь стала более плотной.

Возьмите обычную пластиковую емкость, желательно белого цвета. Переверните ее и на низ прикрепите конус. Если он «сядет» плотно - хорошо, в противном случае его лучше бы подклеить. Обращаем ваше внимание, что для данной работы обычный клей ПВА не подойдет, необходимо найти более надежный вариант.

Вырежьте четыре бумажных треугольника, приклейте призу бутылки-ракеты, это будут опоры.

Итак, как же можно запустить такую чудесную «мастерилку»? Первым делом следует залить в бутылку самую обычную воду примерно на треть объема. Возьмите обыкновенный насос для велосипеда, вставьте насосный шланг в горлышко (если остается зазор, т.е. шлаг меньше по диаметру горлышка, тогда в пробке следует порезать отверстие подходящего диаметра, т.е. шлаг должен входить достаточно плотно). Просуньте шланг настолько далеко, чтобы внутри сосуда он выходил из воды. Если вы желаете, чтобы ракета полетела очень далеко, то придерживайте ее при накачивании, а потом отпустите, когда накачаете воздух. Качайте насосом не слишком интенсивно. В емкости образуется давление и тогда ваша водяная поделочка взлетит, а вода, естественно, выльется.

Поделка ракета из картона

Наиболее простой вариант картонной «мастерилки» покорится даже самым маленьким. Первым делом необходимо перенести на картонный лист все необходимые детали, затем вырезать их. Задействуйте также рулон от туалетной бумаги - в нем следует сделать нужные разрезы небольшого размера.

Соедините вместе все детали и приклейте разукрашенную бумагу к летательным средствам. К поделочке можно приклеить также коктейльную трубочку - тогда можно будет протянуть по комнате тонкую веревочку и устраивать настоящие запуски.

А вот вариант для учащихся начальной школы, он будет уже более сложным. Вырежьте по шаблонам детали, в качестве материала используйте цветной картон. Накрутите на рулон от туалетной бумаги цветной бумажный лист, концы загните внутрь.

С одной стороны картонного рулона сделайте ножницами 4 прорези, длина каждой должна составить 2,5 см. В прорези вставьте нужные две детали.

На бумажном листе нарисуйте смайлик, вырежьте его и приклейте к ракетному корпусу. В детали-круге проделайте прорезь до центра. Сверните конус и зафиксируйте деталь в таком положении при помощи конуса.

Ниткой свяжите кончики конфеты, закрепите конфету внутри ракетного корпуса. Конус закрепите на верхней части. К ракетным «опорам» прикрепите полосочки гофрированной бумаги при помощи все того же степлера. Если желаете, то можно дополнительно декорировать «самоделку», например, приклеить цифры, нарисовать какой-то орнамент фломастером. Теперь вы знаете, такое времяпрепровождение принесет только позитивные эмоции, послужит развитию аккуратности и концентрации внимания.

Если Вам понравился наш сайт, выразите свое "спасибо"
нажатием на кнопочки ниже.


Мало кто из моих ровесников не увлекался постройкой моделей ракет. Может, сказывалось всемирное увлечение человечества пилотируемыми полетами, а может, кажущаяся простота постройки модели. Картонная трубка с тремя стабилизаторами и головным обтекателем из пенопласта или бальсы, согласитесь, намного проще даже элементарной модели самолета или автомобиля. Правда, энтузиазм большинства молодых Королевых, как правило, улетучивался на этапе поиска ракетного двигателя. Оставшимся ничего не оставалось, как осваивать азы пиротехники.

Между Главным конструктором наших ракет Сергеем Королевым и Главным конструктором наших ракетных двигателей Валентином Глушко шла негласная борьба за звание Самого Главного: кто же действительно важнее, конструктор ракет или двигателей для них? Глушко приписывают крылатую фразу, якобы брошенную им в разгар такого спора: «Да я к своему двигателю забор привяжу — он на орбиту выйдет!» Впрочем, эти слова — отнюдь не пустое бахвальство. Отказ от «глушковских» двигателей привел к краху королевской лунной ракеты H-1 и лишил СССР каких-либо шансов на победу в лунной гонке. Глушко же, став генеральным конструктором, создал сверхмощную ракету-носитель «Энергия», превзойти которую до сих пор никому не удается.


Двигатели из патронов

Та же закономерность работала и в любительском ракетостроении — выше летала ракета, у которой был более мощный двигатель. Несмотря на то что первые ракетомодельные двигатели появились в СССР еще до войны, в 1938 году, Евгений Букш, автор вышедшей в 1972 году книги «Основы ракетного моделизма», взял за основу такого двигателя картонную гильзу охотничьего патрона. Мощность определялась калибром исходной гильзы, а производились двигатели двумя пиротехническими мастерскими ДОСААФ вплоть до 1974 года, когда было принято решение об организации в стране ракетомодельного спорта. Для участия в международных соревнованиях потребовались двигатели, подходящие по своим параметрам под требования международной федерации.

Их разработка была поручена Пермскому НИИ полимерных материалов. Вскоре была выпущена опытная партия, на основе которой и начал развиваться советский ракетомодельный спорт. С 1982 года с перебоями заработало серийное производство двигателей на государственном казенном заводе «Импульс» в украинской Шостке — в год выпускали 200−250 тысяч экземпляров. Несмотря на жесткий дефицит таких двигателей, это был период расцвета советского любительского модельного ракетостроения, который закончился в 1990 году одновременно с закрытием производства в Шостке.

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.


А в чем, собственно, сложность производства? По своей сути ракетомодельный двигатель — простейшее устройство: картонная трубка с запрессованным внутри дымным порохом марки ДРП-3П (дымный ружейный порох 3-й состав для прессованных изделий) с керамической заглушкой с соплом-дыркой с одной стороны и пыжом с вышибным зарядом — с другой. Первая проблема, с которой не справлялось серийное производство, — точность дозировки, от которой зависел и конечный суммарный импульс двигателя. Вторая — качество корпусов, которые часто давали трещины при прессовании под давлением в три тонны. Ну и третья — собственно, качество запрессовки. Впрочем, проблемы с качеством возникали не только в нашей стране. Не блещут им и серийные ракетомодельные двигатели другой великой космической державы — США. А лучшие модельные двигатели делают микроскопические предприятия в Чехии и Словакии, откуда их контрабандой провозят для особо важных мероприятий.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел. Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве. Слава богу, пальцы и глаза у всех остались на месте.

Из всех искусств

Из всех искусств для нас важнейшим является кино, любил поговаривать Ильич. Для ракетомоделистов-любителей середины прошлого века — тоже. Ибо кино- и фотопленка того времени делалась из целлулоида. Туго свернутая в небольшой рулончик и засунутая в бумажную трубку со стабилизаторами, она позволяла взлететь простейшей ракете на высоту пятиэтажного дома. У таких двигателей было два главных недостатка: первый — небольшая мощность и, как следствие, высота полета; второй — невозобновимость запасов целлулоидной пленки. Например, фотоархива моего отца хватило всего на пару десятков запусков. Сейчас, кстати, жалко.


Максимальная высота при фиксированном суммарном импульсе двигателя достигалась при кратковременном четырехкратном скачке мощности на старте и дальнейшем переходе на ровную среднюю тягу. Скачок тяги достигался формированием отверстия в топливном заряде.

Второй вариант двигателей собирался, так сказать, из отходов деятельности Советской армии. Дело в том, что при стрельбах на артиллерийских полигонах (а один из них как раз находился неподалеку от нас) метательный заряд при выстреле выгорает не до конца. И если хорошенько поискать в траве перед позициями, можно было найти довольно много трубчатого пороха. Самая несложная ракета получалась в результате простого заворачивания такой трубки в обычную фольгу от шоколадки и поджигания с одного конца. Летала такая ракета, правда, невысоко и непредсказуемо, зато весело. Мощный двигатель получался при собирании длинных трубок в пакет и заталкивании их в картонный корпус. Из обожженной глины изготавливалось и примитивное сопло. Работал такой двигатель очень эффектно, поднимал ракету довольно высоко, но часто взрывался. К тому же на артиллерийский полигон не особо походишь.


Третий вариант представлял собой попытку почти промышленного изготовления ракетомодельного двигателя на самодельном дымном порохе. Делали его из калиевой селитры, серы и активированного угля (он постоянно заклинивал родительскую кофемолку, на которой я его измельчал в пыль). Признаюсь честно, мои пороховые двигатели работали с перебоями, поднимая ракеты всего на пару десятков метров. Причину я узнал лишь пару дней назад — запрессовывать двигатели нужно было не молотком в квартире, а школьным прессом в лаборатории. Но кто бы, спрашивается, меня в седьмом классе пустил запрессовывать ракетные двигатели?!


Два редчайших двигателя, которые удалось достать «ПМ»: МРД 2, 5−3-6 и МРД 20−10−4. Из советских запасов ракетомодельной секции в Детском доме творчества на Воробьевых горах.

Работа с ядами

Вершиной же моей двигателестроительной деятельности стал довольно ядовитый двигатель, работавший на смеси цинковой пыли и серы. Оба ингредиента я выменял у одноклассника, сына директора городской аптеки, на пару резиновых индейцев, самую конвертируемую валюту моего детства. Рецепт я почерпнул в жутко редкой переводной польской ракетомодельной книжке. И двигатели набивал в папином противогазе, который хранился у нас в кладовке, — в книжке особый упор делался на токсичность цинковой пыли. Первый пробный запуск был проведен в отсутствие родителей на кухне. Столб пламени из зажатого в тисках двигателя с ревом устремился к потолку, прокоптив на нем пятно диаметром в метр и наполнив квартиру таким вонючим дымом, с каким не сравнится и коробка выкуренных сигар. Вот эти-то двигатели и обеспечили мне рекордные запуски — метров, наверное, на пятьдесят. Каково же было мое разочарование, когда через двадцать лет я узнал, что детские ракеты нашего научного редактора Дмитрия Мамонтова летали в разы выше!


1, 2, 4) При наличии заводского ракетного двигателя с постройкой простейшей ракеты справится и школьник начальных классов. 3) Продукт самодеятельного творчества — двигатель из патронной гильзы.

На удобрениях

Двигатель Дмитрия был проще и технологичнее. Основной компонент его ракетного топлива — это натриевая селитра, которая продавалась в хозяйственных магазинах как удобрение в мешках по 3 и 5 кг. Селитра служила окислителем. А в качестве горючего выступала обычная газета, которая и пропитывалась перенасыщенным (горячим) раствором селитры, а затем высушивалась. Правда, селитра в процессе сушки начинала кристаллизоваться на поверхности бумаги, что приводило к замедлению горения (и даже гашению). Но тут вступало в действие ноу-хау — Дмитрий проглаживал газету горячим утюгом, буквально вплавляя селитру в бумагу. Это стоило ему испорченного утюга, но зато такая бумага горела очень быстро и стабильно, выделяя большое количество горячих газов. Набитые свернутой в тугой рулон селитрованной бумагой картонные трубки с импровизированными соплами из бутылочных пробок взлетали на сотню-другую метров.

Карамель

Параноидальный запрет российских властей на продажу населению разных химреактивов, из которых можно изготовить взрывчатку (а ее можно изготовить практически из всего, хоть из древесных опилок), компенсируется доступностью через интернет рецептов практически всех видов ракетного топлива, включая, например, состав горючего для ускорителей «Шаттла» (69,9% перхлората аммония, 12,04% полиуретана, 16% алюминиевой пудры, 0,07% оксида железа и 1,96% отвердителя).


Картонные или пенопластовые корпуса ракет, топливо на основе пороха кажутся не очень серьезными достижениями. Но как знать — может, это первые шаги будущего конструктора межпланетных кораблей?

Безусловным хитом любительского ракетного двигателестроения сейчас являются так называемые карамельные двигатели. Рецепт топлива прост до неприличия: 65% калиевой селитры KNO3 и 35% сахара. Селитра подсушивается на сковородке, после чего измельчается в обычной кофемолке, медленно добавляется в расплавленный сахар и застывает. Итогом творчества становятся топливные шашки, из которых можно набирать любые двигатели. В качестве корпусов двигателей и форм прекрасно подходят стреляные гильзы от охотничьих патронов — привет тридцатым! Гильзы в неограниченном количестве есть на любом стрелковом стенде. Хотя признанные мастера рекомендуют использовать не сахарную, а сорбитовую карамель в тех же пропорциях: сахарная развивает большее давление и, как следствие, раздувает и прожигает гильзы.


Назад в будущее

Ситуация, можно сказать, вернулась в 1930-е годы. В отличие от других видов модельного спорта, где недостаток отечественных двигателей и прочих комплектующих можно компенсировать импортом, в ракетомодельном спорте это не проходит. У нас ракетомодельные двигатели приравниваются к взрывчатым веществам, со всеми вытекающими условиями по хранению, транспортировке и провозе через границу. Не родился еще на земле русской человек, способный наладить импорт таких изделий.

Выход один — производство на родине, благо технология тут вовсе не космическая. Но заводы, имеющие лицензии на производство таких изделий, за них не берутся — им этот бизнес был бы интересен лишь при миллионных тиражах. Вот и вынуждены начинающие ракетомоделисты из крупнейшей космической державы летать на карамельных ракетах. Тогда как в Соединенных Штатах сейчас стали появляться уже многоразовые модельные ракетные двигатели, работающие на гибридном топливе: закись азота плюс твердое горючее. Как вы думаете, какая страна лет через тридцать полетит к Марсу?