34.Энергетические уровни в атомах и молекулах. Испускание и поглощение энергии при переходах между энергетическими уровнями. Спектр атома водорода.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ МОЛЕКУЛ

Так как молекулы состоят из атомов, то внутримолекулярное движение сложнее внутриатомного. В молекуле кроме движе­ния электронов относительно ядер происхо­дит колебательное движение атомов около их положения равновесия (колебание ядер вместе с окружающими их электронами) и вращательное движение молекулы как целого Электронному, колебательному и враща­тельному движениям молекулы соответствуют три типа уровней энергии: Еэл, Екол и Евр. Согласно квантовой механике, энергия всех видов движения в молекуле принимает только дискретные значения (квантуется). Представим приближенно полную энергию Е молекулы суммой квантованных значении энергий разных видов: Е = Еэл + Екол + Евр.

Расстояние между электронными уровнями энергии порядка нескольких электрон-вольт, между соседними колебательными уровнями 10~2-10"" эВ, между соседними вращательными уровнями Ю-5 _ ю-з эВ.

ОСОБЕННОСТИ ИЗЛУЧЕНИЯ И ПОГЛОЩЕНИЯ ЭНЕРГИИ АТОМАМИ И МОЛЕКУЛАМИ

Атом и молекула могут находиться в стационарных энергетических состояниях. В этих состояниях они не излучают и не поглощают энергии. Энергетические состояния схематически изображают в виде уровней. Самый нижний уровень энергии - основной - соответствует основному состоянию.

При квантовых переходах атомы и молекулы скачкообразно переходят из одного стационарного состояния в другое, с одного энергетического уровня на другой. Изменение состояния атомов связано с энергетическими перехо­дами электронов. В молекулах энергия может изменяться не только в результате электронных переходов, но и вследствие изменения колебания атомов и переходов между вращательными уровнями. При переходе с более высоких энергетических уровней на нижние атом или молекула отдает энергию, при обратных переходах поглощает. Атом в основном состоянии способен толь­ко поглощать энергию. Различают два типа квантовых переходов:

1) без излучения или поглощения элек­тромагнитной энергии атомом или молекулой. Такой безызлучательный переход происходит при взаимодействии атома или молекулы с другими частицами, например

в процессе столкновения. Различают неупругое столкновение, при котором изменяется внутреннее состояние атома и осуществляется безызлучательный переход, и упругое - с изменением кинетической энергии атома или молекулы, но с сохранением внутреннего состоя­ния;

2) с излучением или поглощением фотона. Энергия фотона равна разности энергий начального и конечного стационарных состояний атома или молекулы:

Формула (29.1) выражает закон сохранения энергии

В зависимости от причины, вызывающей квантовый переход с испусканием фотона, различают два вида излучения. Если эта причина внутренняя и возбужденная частица самопроизвольно переходит на нижний энергетический уровень, то такое излучение называют спонтанным (рис. 29.1, а). Оно случайно и хаотично по времени, частоте (могут быть переходы между разными подуров­нями), по направлению распространения и поляризации. Обычные источники света испускают в основном спонтанное излучение. Дру­гое излучение вынужденное, или индуцированное (рис. 29.1, б). Оно возникает при взаимодействии фотона с возбужденной частицей, если энергия фотона равна разности уровней энергий. В результате вынужденного квантового перехода от частицы будут распростра­няться в одном направлении два одинаковых фотона: один - пер­вичный, вынуждающий, а другой - вторичный, испущенный. Излучаемая атомами или молекулами энергия формирует спектр испускания, а поглощаемая - спектр поглощения.

Интенсивность спектральных линий определяется числом одина­ковых переходов, происходящих в секунду, и поэтому зависит от количества излучающих (поглощающих) атомов и вероятности соответствующего перехода.

Квантовые переходы осуществляются не между любыми энерге­тическими уровнями. Установлены правила отбора, или запрета, формулирующие условия, при которых переходы возможны и не­возможны или маловероятны.

Энергетические уровни большинства атомов и молекул достаточ­но сложны. Структура уровней и, следовательно, спектров зависит не только от строения одиночного атома или молекулы, но и от внешних причин.

Электромагнитное взаимодействие электронов приводит к тонко­му расщеплению1 энергетических уровней (тонкая структура). Вли­яние магнитных моментов ядер вызывает сверхтонкое расщепление (сверхтонкая структура). Внешние по отношению к атому или моле­куле электрические и магнитные поля также вызывают расщепле­ние энергетических уровней (явления Штарка и Зеемана; см. § 30.2).

Спектры являются источником различной информации.

Прежде всего по виду спектра можно идентифицировать атомы и молекулы, что входит в задачи качественного спектрального анали­за. По интенсивности спектральных линий определяют количество излучающих (поглощающих) атомов - количественный спектраль­ный анализ. При этом сравнительно легко находят примеси в кон­центрациях 10~5-10~6% и устанавливают состав образцов очень малой массы - до нескольких десятков микрограммов.

По спектрам можно судить о строении атома или молекулы, структуре их энергетических уровней, подвижности отдельных частей больших молекул и т.п. Зная зависимость спектров от по­лей, воздействующих на атом или молекулу, получают информацию о взаимном расположении частиц, ибо воздействие соседних атомов (молекул) осуществляется посредством электромагнитного поля.

Изучение спектров движущихся тел позволяет на основании оптического эффекта Доплера определить относительные скорости излучателя и приемника излучения.

Если учесть, что по спектру вещества удается сделать выводы о его состоянии, температуре, давлении и т.п., то можно высоко оце­нить использование излучения и поглощения энергии атомами и молекулами как исследовательский метод.

В зависимости от энергии (частоты) фотона, испускаемого или поглощаемого атомом (или молекулой), классифицируют следу­ющие виды спектроскопии: радио-, инфракрасная, видимою излуче­ния, ультрафиолетовая и рентгеновская.

По типу вещества (источника спектра) различают атомные, молекулярные спектры и спектры кристаллов.

Поглощение света (закон Бугера)

ПС рентгеновских и гамма-лучей количественно описывается законом Бугера:

Где I0 – интенсивность падающего излучения; I – интенсивность излучения после прохождения слоя вещ-ва толщиной х. Эта формула отличается от закона Бугера для света только обозначением коэффициента μ, в случае ионизирующего излучения он наз-ся коэффициентом ослабления. Коэффициент зависит, во-первых, от рода вещ-ва: чем тяжелее элемент, тем коэффициент ослабления больше. Во-вторых, μ очень сильно зависит от рода и энергии излучения.

В медпрактике мощность ионизирующих излучений обычно характеризуется не интенсивностью I, а так называемой мощностью дозы Р. Но Р и I пропорциональны друг другу, поэтому:

Р=Р0*exp (-μx)

Наряду с коэф. ослабления часто пользуются др. константой, называемой слой половинного ослабления. Это толщина вещ-ва, к-я ослабляет мощность дозы вдвое. Его обычно обозначают d0,5. μ=0,693/ d0,5 и закон Бугера можно написать в такой форме: Р=Р0*exp (0,693х/ d0,5).

Применяя понятие слоя половинного ослабления, можно наглядно представить, как изменяется поток излучения при прохождении через вещество.

Зная вел-ну слоя половинного ослабления в стандартном вещ-ве, можно сравнивать жесткость разных излучений. Чем больше d0,5 , тем более жестким явл. Излучение. Это практически удобно, т.к. слой половинного ослабления легко определить любым дозиметрическим прибором, если имеется набор пластинок разной толщины.

В ряде случаев поглощающий слой вещ-ва удобно характеризовать не толщиной, а вел-й массы, приходящейся на единицу площади (m/S). Пусть имеется пластинка площадью S и толщиной х. Объем такой пластинки будет равен S*x а масса m=S*x*ρ, где ρ – плотность поглощающего материала. Отсюда х=m/Sρ и х=(μ/ρ)*(m/S) и далее: Р=Р0*exp(-((μ/ρ)*(m/S))).

Величину μ/ρ=μмасс называют массовым коэффициентом ослабления. Пользоваться им более удобно, чем линейным коэффициентом μ, п.ч. значения массовых коэффициентов ослабления в разных вещ-х гораздо меньше отличаются друг от друга.

Если излучение проходит последовательно через неск-ко разных вещ-в, то при использовании массового коэффициента ослабления можно как бы все их объединить в один слой с усредненной плотностью, что значительно упрощает расчет.

РАССЕЯНИЕ СВЕТА

Рассеянием света называют явление, при котором распростра­няющийся в среде световой пучок отклоняется по всевозможным направлениям.

Необходимое условие для возникновения рассеяния света - наличие оптических неоднородностей, т.е. областей с иным, чем основная среда, показателем преломления. Рассеянию и дифракции света присущи некоторые общие черты, оба явления зависят от соотношения преграды или неоднородности и длины волны. Отличие между этими явлениями заключается в том, что дифракция обусловливается интерференцией вторичных волн, а рассеяние - сложением (а не интерференцией!) излучений, возникающих при вынужденных колебаниях электронов в неоднородностях под воздействием света.

Различают два основных вида таких неоднородностей:

1) мелкие инородные частицы в однородном прозрачном вещест­ве. Такие среды являются мутными: дым (твердые частицы в газе), туман (капельки жидкости в газе), взвеси, эмульсии и т.п. Рассея­ние в мутных средах называют явлением Тиндаля.

2) оптические неоднородности, возникающие в чистом веществе из-за статистического отклонения молекул от равномерного рас­пределения (флуктуации плотности). Рассеяние света на неоднородностях этого типа называют молекулярным; например, рассея­ние света в атмосфере.

Уменьшение интенсивности света вследствие рассеяния, как и при поглощении, описывают с помощью показательной функции

Ii =I0-ml ,где m - показатель рассеяния (натуральный).

При совместном действии поглощения и рассеяния света ослаб­ление интенсивности также является показательной функцией Ii =I0-µl , где µ - показатель ослабления (натуральный). Как нетрудно ви­деть, µ= т + k.

Рэлей установил, что при рассеянии в мутной среде на неод-нородностях, приблизительно меньших 0,2А, а также при молеку­лярном рассеянии интенсивность рассеянного света обратно пропор­циональна четвертой степени длины волны (закон Рэлея): I~1/גּ4.

ОПТИЧЕСКИЕ АТОМНЫЕ СПЕКТРЫ

Атомными спектрами называют как спектры испускания, так и спектры поглощения, которые возникают при квантовых переходах между уровнями свободных или слабовзаимодействующих атомов.

Под оптическими атомными спек- ЦЭВ трами будем понимать те, которые обусловлены переходами между уров­нями внешних электронов с энергией фотонов порядка нескольких

электрон-вольт. Сюда относятся ультрафиолетовая, видимая и близкая инфракрасная (до микрометров) области спектра.

Наибольший интерес представляют оптические атомные спектры испуска­ния, которые получают от возбужден­ных атомов. Их возбуждение обычно достигаемся в результате безызлучательных квантовых переходов при электрическом разряде в газе или нагревании вещества пламенем газо­вых горелок, электрической дугой или искрой.

Атома водорода и водородоподобных ионов.

Формула для часто­ты света, излучаемого (поглощаемого) атомом водорода (Z = 1):

Эта формула была экспериментально найдена И.Я. Бальмером еще задолго до создания квантовой механики и теоретически получена Бором

В спектре можно выделить группы линий, называемые спек­тральными серия. Каждая серия применительно к спектрам испускания соответствует переходам с различных уровней на один и тот же конечный.

В ультрафиолетовой области расположена серия Лаймана. которая образуется при переходе с верхних энергетических уровней на самый нижний, В видимой и близкой ультрафиолетовой областях спектра рас­положена серия Балъмера, которая возникает вследствие переходов с верхних энергетических уровней на второйю

В инфракрасной области расположена серия Пашека, которая возникает при переходах с верхних энергетических уровней на третий

Может показаться, что спектр атомарного водорода не ограни­чен со стороны малых частот, так как энергетические уровни по мере увеличения п становятся сколь угодно близкими. Однако на самом деле вероятность перехода между такими уровнями столь мала, что практически эти переходы не наблюдаются.

Для атомного спектрального анализа используют как спектры испускания, так и спектры поглощения (абсорбционный атомный спектральный анализ). В медицинских целях эмиссионный анализ служит в основном для определения микроэлементов в тканях организма, небольшого количества атомов металлов в консервированных продуктах с гиги­енической целью, некоторых элементов в трупных тканях для целей судебной медицины и т.п.

Что происходит с атомами элементов во время химических реакций? От чего зависят свойства элементов? На оба эти вопроса можно дать один ответ: причина лежит в строении внешнего В нашей статье мы рассмотрим электронное металлов и неметаллов и выясним зависимость между структурой внешнего уровня и свойствами элементов.

Особые свойства электронов

При прохождении химической реакции между молекулами двух или более реагентов происходят изменения в строении электронных оболочек атомов, тогда как их ядра остаются неизменными. Сначала ознакомимся с характеристиками электронов, находящихся на наиболее удаленных от ядра уровнях атома. Отрицательно заряженные частицы располагаются слоями на определенном расстоянии от ядра и друг от друга. Пространство вокруг ядра, где нахождение электронов наиболее возможно, называется электронной орбиталью. В ней сконденсировано около 90 % отрицательно заряженного электронного облака. Сам электрон в атоме проявляет свойство дуальности, он одновременно может вести себя и как частица, и как волна.

Правила заполнения электронной оболочки атома

Количество энергетических уровней, на которых находятся частицы, равно номеру периода, где располагается элемент. На что же указывает электронный состав? Оказалось, что количество электронов на внешнем энергетическом уровне для s- и p-элементов главных подгрупп малых и больших периодов соответствует номеру группы. Например, у атомов лития первой группы, имеющих два слоя, на внешней оболочке находится один электрон. Атомы серы содержат на последнем энергетическом уровне шесть электронов, так как элемент расположен в главной подгруппе шестой группы и т. д. Если же речь идет о d-элементах, то для них существует следующее правило: количество внешних отрицательных частиц равно 1 (у хрома и меди) или 2. Объясняется это тем, что по мере увеличения заряда ядра атомов вначале происходит заполнение внутреннего d- подуровня и внешние энергетические уровни остаются без изменений.

Почему изменяются свойства элементов малых периодов?

В малыми считаются 1, 2, 3 и 7 периоды. Плавное изменение свойств элементов по мере возрастания ядерных зарядов, начиная от активных металлов и заканчивая инертными газами, объясняется постепенным увеличением количества электронов на внешнем уровне. Первыми элементами в таких периодах являются те, чьи атомы имеют всего один или два электрона, способные легко отрываться от ядра. В этом случае образуется положительно заряженный ион металла.

Амфотерные элементы, например, алюминий или цинк, свои внешние энергетические уровни заполняют небольшим количеством электронов (1- у цинка, 3 - у алюминия). В зависимости от условий протекания химической реакции они могут проявлять как свойства металлов, так и неметаллов. Неметаллические элементы малых периодов содержат от 4 до 7 отрицательных частиц на внешних оболочках своих атомов и завершают ее до октета, притягивая электроны других атомов. Например, неметалл с наибольшим показателем электроотрицательности - фтор, имеет на последнем слое 7 электронов и всегда забирает один электрон не только у металлов, но и у активных неметаллических элементов: кислорода, хлора, азота. Заканчиваются малые периоды, как и большие, инертными газами, чьи одноатомные молекулы имеют полностью завершенные до 8 электронов внешние энергетические уровни.

Особенности строения атомов больших периодов

Четные ряды 4, 5, и 6 периодов состоят из элементов, внешние оболочки которых вмещают всего один или два электрона. Как мы говорили ранее, у них происходит заполнение электронами d- или f- подуровней предпоследнего слоя. Обычно это - типичные металлы. Физические и химические свойства у них изменяются очень медленно. Нечетные ряды вмещают такие элементы, у которых заполняются электронами внешние энергетические уровни по следующей схеме: металлы - амфотерный элемент - неметаллы - инертный газ. Мы уже наблюдали ее проявление во всех малых периодах. Например, в нечетном ряду 4 периода медь является металлом, цинк - амфотерен, затем от галлия и до брома происходит усиление неметаллических свойств. Заканчивается период криптоном, атомы которого имеют полностью завершенную электронную оболочку.

Как объяснить деление элементов на группы?

Каждая группа - а их в короткой форме таблицы восемь, делится еще и на подгруппы, называемые главными и побочными. Такая классификация отражает различное положение электронов на внешнем энергетическом уровне атомов элементов. Оказалось, что у элементов главных подгрупп, например, лития, натрия, калия, рубидия и цезия последний электрон расположен на s-подуровне. Элементы 7 группы главной подгруппы (галогены) заполняют отрицательными частицами свой p-подуровень.

Для представителей побочных подгрупп, таких, как хром, типичным будет наполнение электронами d-подуровня. А у элементов, входящих в семейства накопление отрицательных зарядов происходит на f-подуровне предпоследнего энергетического уровня. Более того, номер группы, как правило, совпадает с количеством электронов, способных к образованию химических связей.

В нашей статье мы выяснили, какое строение имеют внешние энергетические уровни атомов химических элементов, и определили их роль в межатомных взаимодействиях.

Строение веществ было интересно людям с той поры, как возникла возможность не беспокоиться о пропитании и изучать окружающий мир. Такие явления, как засухи, наводнения, молнии, ужасали человечество. Незнание их объяснений порождало веру в различных злых богов, требующих жертв. Именно поэтому люди начали изучать природные явления, стремясь к их предсказанию, и углубляться в строение веществ. Они изучили и ввели следующие два важных понятия в химии: энергетический уровень и подуровень.

Предпосылки к открытию мельчайших химических веществ

О маленьких частицах, из которых состоят вещества, догадались еще древние греки. Они сделали странное открытие: мраморные ступени, по которым за несколько десятилетий прошло множество людей, изменили свою форму! Это привело к выводу о том, что ступня прошедшего забирает какую-то частичку камня с собой. Данное явление далеко от понимания существования энергетического уровня в химии, но именно с него все началось. Наука начала прогрессивно развиваться и углубляться в строение химических элементов и их соединений.

Начало изучения строения атома

В начале XX века посредством опытов с электричеством был открыт атом. Он считался электронейтральным, но имел положительные и отрицательные составные частицы. Ученые хотели выяснить их распределение внутри атома. Было предложено несколько моделей, одна из которых даже имела название «булочка с изюмом». Британский физик Эрнест Резерфорд провел опыт, который показал, что в центре атома расположено положительное ядро, а отрицательный заряд находится в маленьких электронах, вращающихся вокруг него.

Открытие энергетического уровня в химии стало большим прорывом в изучении строения веществ и явлений.

Энергетический уровень

В ходе изучения свойств химических веществ выяснилось, что каждый элемент имеет свои уровни. Например, у кислорода схема строения одна, а у азота совсем другая, хотя номера их атомов различны лишь на единицу. Так что такое энергетический уровень? Это электронные слои, состоящие из электронов, которые образуются по причине различной силы их притяжения к ядру атома. Одни находятся ближе, а другие - дальше. То есть верхние электроны «давят» на нижние.

Число энергетических уровней в химии равняется номеру периода в Периодической таблице Д. И. Менделеева. Наибольшее количество электронов, которые находятся на данном энергетическом уровне, определяется по следующей формуле: 2n 2 , где n - это номер уровня. Таким образом, на первом энергетическом уровне может быть расположено не более двух электронов, на втором - не более восьми, на третьем - восемнадцати и так далее.

У каждого атома есть уровень, находящийся от его ядра дальше других. Он является крайним, или последним, и называется внешним энергетическим уровнем. на нем для элементов главных подгрупп равняется номеру группы.

Для построения схемы атома и его энергетических уровней в химии нужно следовать такому плану:

  • определите число всех электронов атома данного элемента, которое равно его порядковому номеру;
  • определите число энергетических уровней по номеру периода;
  • определите число электронов на каждом энергетическом уровне.

Примеры схем строения энергетических уровней некоторых элементов смотрите ниже.

Энергетические подуровни

В атомах, помимо энергетических уровней, существуют еще и подуровни. На каждом уровне, в зависимости от числа электронов на нем, заполняются определенные подуровни. От того, как подуровень заполняется, различают четыре типа элементов:

  • S-элементы. Происходит заполнение s-подуровней, на которых могут находиться не более двух электронов. К ним относятся первые два элемента от каждого периода;
  • P-элементы. В данных элементах может быть не более шести электронов, расположенных на p-подуровне;
  • D-элементы. К ним относятся элементы больших периодов (декад), находящиеся между s- и p-элементами;
  • F-элементы. Заполнение f-подуровня происходит у актиноидов и лантоноидов, находящихся в шестом и седьмом периодах.

Всех людей, существующих в мире, можно разделить на несколько групп по уровню энергетического развития.

  • Уровень 1 . Низшая ступень. Сюда относятся люди с нарушенным и ослабленным энергетическим полем. Часто это представители человечества, имеющие хронические или временные заболевания.
  • Уровень 2 . Часть населения, принадлежащая к европеоидной расе и сознательно не отражающая свое биополе.
  • Уровень 3 . Дает возможность почувствовать не только свое биополе, но и энергетику другого человека. Часто людей, умеющих это делать, именуют экстрасенсами.
  • Уровень 4 . Часть жителей планеты, способных концентрировать энергию и затем направлять ее на живых существ (людей и животных), события, окружающие предметы и на все, что поддается воздействию. К этой группе относят колдунов, владеющих темной и светлой магией (знахари, целители, ведьмы, шаманы, ведуны). В индийских странах подобных людей называют асмерами и хилерами. Также к четвертому уровню причисляют начинающих йогов.
  • Уровень 5 . Пятую группу составляют люди, способные регенерировать и восстанавливать свой организм на клеточном уровне (кроме половых клеток). В природе не существуют людей, одаренных от рождения такой силой. Все, кто обладает энергетикой пятого и шестого уровней проделали колоссальную работу по самосовершенствованию и развитию своего биополя.
  • Уровень 6-8 . Предел осознания своего энергетического поля, которым обладают йоги, индийские волшебники высших ступеней. Такие люди способны воздействовать на судьбу человека и последующих поколений, управлять психикой и сознательно производить прочие серьезные изменения.

Специалист по эзотерике Г. Лэндис выделил более десятка факторов, которые помогают человеку развить свой энергетический уровень.

  1. Выполнение упражнений, способствующих повышению силы биополя.
  2. Ориентация на положительные эмоции вместо отрицательных. Накопление первых и устранение вторых.
  3. Самосозерцание и медитация.
  4. Постоянное общение и контактирование с людьми, относящимися к более высокому энергетическому уровню.
  5. Стремление вобрать в себя как можно больше энергии Вселенной - праны.
  6. Исполнение всех своих обязанностей.
  7. Развитие способности организма получать только полезную энергию из пищи.
  8. Научиться правильно дышать, чтобы газообмен при дыхании происходил интенсивнее.
  9. Развитие физической выносливости.
  10. Выполнение упражнений, направленных на улучшение гибкости позвоночника и суставов.
  11. Получение и сохранение биологической энергии во время сна.
  12. Избегание пустых разговоров и действий, не несущих пользу.
  13. Постоянный контакт с живыми существами (животные и птицы).
  14. Выращивание растений и овощей (разведение цветов, плодовых культур в саду и огороде)
  15. Посвящение себя сфере искусства как хобби.
  16. Вегетарианство или сведение до минимума поедания мяса и блюд из него.

Чтобы развить свое биополе, нет необходимости беспрекословно исполнять каждый пункт, названный в списке. Можно взять несколько приведенных советов, и стараться выполнять их постоянно и в полной мере. Этот вариант будет лучше, чем пытаться следовать всем рекомендациям, но в итоге относится недобросовестно к указанным предписаниям. Было бы хорошо придерживаться пунктов, обозначенных в первой половине списка, так как они наиболее плодотворно влияют на развитие энергетического уровня.

При изучении мы узнали, чему равно максимальное число электронов на каждой орбитали, на различных энергетических уровнях и подуровнях.

Что еще нужно знать для установления строения электронной оболочки атома любого элемента? Для этого нужно знать порядок заполнения орбиталей электронами.

Порядок заполнения электронами атомных орбиталей определяет принцип наименьшей энергии (принцип минимума энергии):

Основное (устойчивое) состояние атома - это такое состояние, которое характеризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.

Орбитали одного подуровня имеют одинаковую энергию.

Например, три орбитали данного р-подуровня имеют одинаковую энергию.

Поэтому принцип наименьшей энергии определяет порядок заполнения энергетических подуровней: электроны заполняют энергетические подуровни в порядке увеличения их энергии.

Как показывает рисунок ниже, наименьшую энергию имеет 15-подуровень, который первым заполняется электронами.

Затем последовательно заполняется электронами следующие подуровни: 2s, 2р, 3s, 3р. После 3р-подуровня электроны заполняют 4, подуровень, так как он имеет меньшую энергию, чем 3d-подуровень.

Это объясняется тем, что энергия подуровня определяется суммой главного и побочного квантовых чисел, т. е. суммой (n + l ). Чем меньше эта сумма, тем меньше энергия подуровня. Если суммы n + l одинаковы для разных подуровней, то их энергия тем меньше, чем меньше главное квантовое число n. Изложенные правила были сформулированы в 1951 г. советским ученым В. М. Клечковским (правила Клечковского ).

На подуровнях, которые показаны на рисунке, может разместиться 112 электронов. В атомах известных элементов находится от 1 до 110 электронов. Поэтому другие подуровни в основных состояниях атомов не заполняются электронами.

Наконец, осталось выяснить вопрос, в каком порядке электроны заполняют орбитам одного подуровня. Для этого нужно познакомиться с правилом Гунда :

На одном подуровне электроны располагаются так, чтобы абсолютное значение суммы спиновых квантовых чисел (суммарного спина) было максимальным. Это соответствует устойчивому состоянию атома.

Рассмотрим, например, какое расположение трех электронов на р-подуровне соответствует устойчивому состоянию атома:

Рассчитаем абсолютное значение суммарного спина для каждого состояния:

Строение электронных оболочек (электронные конфигурации) атомов элементов I IV периодов

Чтобы правильно изобразить электронные конфигурации различных атомов, нужно знать:

1) число электронов в атоме (равно порядковому номеру элемента);

2) максимальное число электронов на уровнях, подуровнях;

3) порядок заполнения подуровней и орбиталей.

Элементы I периода:

В таблицах представлены схемы электронного строения, электронные и электронно-графические формулы атомов элементов II, III и IV периодов.

Элементы II периода:

Элементы III периода:

Элементы IV периода: