ПРОДУКТ СОВРЕМЕННЫХ НАНОТЕХНОЛОГИЙ – КОЛЛОИДНОЕ НАНОСЕРЕБРО

Серебро – металл белого цвета, практически не изменяющийся под воздействием кислорода воздуха при комнатной температуре, однако из-за наличия в воздухе сероводорода со временем покрывается тёмным налётом сульфида серебра Ag2S:

4Ag + O2 + 2H2S = 2Ag2S + 2H2O.

Удалить этот сульфид с поверхности серебряного изделия можно механически, используя различные чистящие пасты или тонкий зубной порошок.

Серебро устойчиво в воде, соляная, разбавленная серная кислота и царская водка на него не действуют, поскольку на поверхности металла образуется защитная плёнка его хлорида AgCl. Серебро хорошо растворяется лишь в азотной кислоте с образованием растворимого нитрата натрия AgNO3:

Ag + 2HNO3 = AgNO3 + NO2 + H2O.

При добавлении к раствору нитрата серебра щёлочи выделяется тёмно-коричневый осадок оксида серебра Ag2O:

2AgNO3 + 2NaOH = 2NaNO3 + Ag2O + H2O.

Основные физические и механические свойства серебра:

Атомная масса ……………………………………………………107, 87 Плотность, г/см3 ……………..……………………………………10, 49 Температура, ОС: плавления...............……………………………………………960, 5 кипения ……………………...............………………………… 2210 Скрытая теплота плавления, кал/г………………….. 25 Удельная теплоёмкость, кал/ (г. град) ………….. 0, 056 Удельное электросопротивление, мкОм. см …...1, 62 Теплопроводность, кал/ (см. сек. град)...........0, 974

  • Бактерицидные свойства серебра известны с глубокой древности. Еще в Древней Индии с помощью этого металла обеззараживали воду, а персидский царь Кир хранил воду в серебряных сосудах.

Историк древнего мира Геродот приводит сведения о том, что в V веке до нашей эры персидский царь Кир во время походов пользовался питьевой водой, сохраняемой в серебряных “священных сосудах”. В религиозных индусских книгах встречаются упоминания об обеззараживании воды путем кратковременного погружения в нее раскаленного серебра, либо в результате длительного контакта с этим металлом в обычных условиях.



В некоторых странах существовал обычай при освящении колодцев бросать в воду серебряные монеты, тем самым улучшая качество воды, а также хранить воду в серебряных чашах. Американские первооткрыватели, путешествуя, часто клали серебряный доллар в молоко, чтобы задержать его скисание.

  • Широкое распространение при лечении ран серебро получило во время Великой Отечественной войны. Серебряную воду применяли при лечении свищей и язв, образовавшихся в результате костного туберкулеза и туберкулеза лимфатических желез с распадом и нагноением. Результаты лечения, как правило, были положительные: язвы и свищи, не закрывавшиеся у некоторых больных несколько лет, несмотря на систематическое лечение кварцем, рыбьим жиром, мазью Вишневского и другими препаратами, после применения серебряной воды полностью закрывались и заживали.

Пионером исследований в области серебра считают французского врача Бенье Креде , который в конце XIX века сообщил об успехах в лечении сепсиса ионами серебра. Продолжая исследования, он выяснил, что серебро в течение трех дней убивает дифтерийную палочку, в течение двух - стафилококки, а возбудитель тифа - за сутки.

  • В конце XIX столетия швейцарский ботаник ботаник Карл Негель установил, что причиной гибели клеток микроорганизмов является воздействие на них ионов серебра. Ионы серебра выступают в роли защитников, уничтожая болезнетворные бактерии, вирусы, грибки. Их действие распространяется более чем на 650 видов бактерий (для сравнения – спектр действия любого антибиотика 5–10 видов бактерий). Интересно, что полезные бактерии при этом не погибают, а значит не развивается дисбактериоз, столь частый спутник лечения антибиотиками.

При этом серебро не просто металл, способный убивать бактерии, но и микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем 80 мкг серебра. При употреблении ионных растворов серебра не только уничтожаются болезнетворные бактерии и вирусы, но и активизируются обменные процессы в организме человека, повышается иммунитет.

  • В 1942 гиду англичанину Р. Бентону удалось остановить эпидемию холеры и дизентерии, свирепствовавшую на строительстве дороги Бирма - Ассам. Бентон наладил снабжение рабочих чистой питьевой водой, обеззараженной с помощью электролитического растворения серебра (концентрация серебра 0,01 мг/л).

Когда бактерицидные свойства серебра были изучены, оказалось, что решающую роль здесь играют положительно заряженные ионы серебра Ag+. Ионизация серебра повышает активность в водных растворах. Катионы серебра подавляют деятельность фермента, обеспечивающего кислородный обмен у простейших микроорганизмов болезнетворных бактерий, вирусов и грибков (порядка 700 видов патогенной «флоры» и «фауны»). Скорость уничтожения зависит от концентрации ионов серебра в растворе: так, кишечная палочка погибает через 3 мин при концентрации 1 мг/л, через 20 мин - при 0,5 мг/л, через 50 мин - при 0,2 мг/л, через 2 ч - при 0,05 мг/л. При этом обеззараживающая способность серебра выше, чем у карболовой кислоты, сулемы и даже таких сильных окислителей, как хлор, хлорная известь, гипохлорид натрия.

  • Серебро - не просто металл, но важный для организма микроэлемент, необходимый для нормального функционирования желез внутренней секреции, мозга и печени. Но серебро - тяжелый металл, и его насыщенные растворы не полезны человеку: предельно допустимая концентрация серебра - 0,05 мг/л. При приеме 2 г солей серебра возникают токсические явления, а при дозе в 10 г вероятен летальный исход. Кроме того, если превышать предельную дозу в течение нескольких месяцев, возможно постепенное накапливание металла в организме.

Высокая биологическая активность микроэлементов-металлов в организме связана, прежде всего, с участием их в синтезе некоторых ферментов, витаминов и гормонов. По данным А.И. Войнара, в суточном рационе человека в среднем должно содержаться 80 мкг ионов серебра. Установлено, что в организме животных и человека содержание серебра составляет 20 мкг на 100 г сухого вещества. Наиболее богаты серебром мозг, железы внутренней секреции, печень, почки и кости скелета.

  • Ионы серебра принимают участие в обменных процессах организма. В зависимости от концентрации его катионы могут как стимулировать, так и угнетать активность ряда ферментов. Под влиянием серебра в два раза усиливается интенсивность окислительного фосфорилирования в митохондриях головного мозга, а также увеличивается содержание нуклеиновых кислот, что улучшает функцию головного мозга.

При инкубации различных тканей в физиологическом растворе, содержащем 0,001 мкг катиона серебра, возрастает поглощение кислорода мозговой тканью на 24%, миокардом – на 20%, печенью – на 36%, почками – на 25%. Повышение концентрации ионов серебра до 0,01 мкг снижало степень поглощения кислорода клетками этих органов, что свидетельствует об участии катионов серебра в регуляции энергетического обмена.

  • В лаборатории вирусологии Киевского государственного университета проводились исследования по изучению физиологического действия серебра. Установлено, что дозы серебра 50; 200 и 1250 мкг/л оказывают благотворное влияние на экспериментальных животных. Крысы, которые пили воду, содержащую ионы серебра, прибавляли в весе и развивались быстрее, чем животные контрольной группы. С помощью спектрального анализа в печени экспериментальных животных было обнаружено 20 мкг серебра на 100 г сухой массы, что соответствовало нормальному содержанию серебра в печени крыс.

Этими сследованиями было доказано, что дозы серебра 50–250 мкг/л являются физиологическими и не оказывают вредного воздействия на организм при длительном применении. К такому же выводу пришли ряд исследователей, изучая влияние серебра, вводимого в дозах, значительно превышающих предельно допустимые, на органы и системы человека и животных. Так, патогистологические исследования подопытных животных, которые получали с питьевой водой серебро в дозах 20000–50000 мкг/л, показали, что при длительном введении в организм ионного серебра происходит накопление его в тканях организма. Однако отложение серебра в тканях не сопровождалось воспалительными и деструктивными изменениями внутренних органов.

  • Исследованиями А.А. Масленко показано, что длительное употребление человеком питьевой воды, содержащей 50 мкг/л серебра (уровень ПДК), не вызывает отклонений от нормы функции органов пищеварения. Не было обнаружено в сыворотке крови изменений активности ферментов, характеризующих функцию печени. Не выявлено также патологических сдвигов в состоянии других органов и систем человека и при употреблении в течении 15 суток воды, обработанной серебром в дозе 100 мкг/л, то есть в концентрациях, в два раза превышающих допустимые.

Следует подчеркнуть, что длительное применение больших доз серебра – концентрацией раствора 30 – 50 мг/л в течение 7–8 лет c лечебной целью, а также при работе с соединениями серебра в производственных условиях может привести к отложению серебра в коже и изменению окраски кожи – аргирии , профессиональной болезни ювелиров («цвет загара»), которая является следствием фотохимического восстановления ионов серебра. При обследовании ряда больных с явлениями аргирии не выявлено изменений в функциональном состоянии органов и систем, а также в биохимических процессах, происходящих в организме, более того у всех людей с признаками аргирии наблюдалась резистентность к большинству вирусных и бактериальных инфекций.

  • Большое влияние на развитие аргирии оказывает индивидуальная предрасположенность организма к серебру, качественные и количественные показатели иммунитета и другие факторы. Косвенным доказательством этого может служить факт, что дозы, которые могут приводить к аргирии, различны. В литературе имеются указания на то, что у некоторых людей даже при приеме больших доз серебра аргирия не возникает. По данным Вудворда Р.Л. и других исследователей, дозы серебра 50–200 мкг/л, исключают возможность аргирии.

При изучении действия препаратов серебра на организм человека отмечено его стимулирующее действие на кроветворные органы, проявляющееся в исчезновении молодых форм нейтрофилов, увеличении количества лимфоцитов и моноцитов, эритроцитов и гемоглобина, замедлении СОЭ.

  • В последние годы в научной литературе появились сведения о том, что серебро является мощным иммуномодулятором, сравнимым со стероидными гормонами . Установлено, что в зависимости от дозы, серебро может как стимулировать, так и подавлять фагоцитоз. Под влиянием серебра повышается количество иммуноглобулинов классов А, М, G, увеличивается процентное содержание абсолютного количества Т-лимфоцитов.

Таким образом, в свете современных представлений, серебро рассматривается как микроэлемент, необходимый для нормального функционирования внутренних органов и систем, а также как мощное средство, повышающее иммунитет и активно воздействующее на болезнетворные бактерии и вирусы. В концентрации 0,05–0,1мг/л серебро оказывает омолаживающее воздействие на кровь и благотворно влияет на протекание физиологических процессов в организме.

«Химия и жизнь» №1, 2010

Говорят, что нанотехнологии - это наше будущее. На самом деле пользуемся мы ими давно, просто не знаем, что они «нано». Более того, нанотехнологии применяли уже три тысячи лет назад. В статье рассказывается о том, как мастера и ученые разных времен и народов манипулировали нанообъектами, еще не понимая, что делают именно это. И если уж их технологии заслуживают модной приставки «нано», то современным химикам (см. статью главного редактора в этом же номере) тем более не стоит упускать эту возможность.

Основатель нанотехнологии - знаменитый американский физик и лауреат Нобелевской премии Ричард Фейнман. Он достаточно подробно рассмотрел последствия безграничной миниатюризации с позиций теоретической физики в своем известном выступлении перед Американским физическим обществом в декабре 1959 года. Правда термин «нанотехнологии» был введен позднее, а широкое распространение получил только в последние годы.

Однако тот факт, что мелкие частицы различных веществ обладают иными свойствами, чем то же вещество с более крупными размерами частиц, был известен давно. Люди занимались нанотехнологиями и не догадывались об этом. Конечно, нельзя говорить о широком и осознанном использовании таких технологий, поскольку во многих случаях секрет производства просто передавали из поколения в поколение, не вдаваясь в причины уникальных свойств, которые приобретают материалы.

Древний Египет

Недавние исследования захоронений, проведенные доктором Филипом Вальтером из Центра исследований и реставрации французских музеев, показали, что в Древнем Египте нанотехнологии применяли для окрашивания волос в черный цвет. Группа исследователей не только изучила образцы волос из древнеегипетских погребений, но также в серии экспериментов воспроизвела древнюю технологию окрашивания (рис. 1). До этого считалось, что египтяне использовали преимущественно натуральные растительные красители - хну и басму. Однако оказалось, что в черный цвет волосы красили пастой из извести Ca(ОН) 2 , оксида свинца PbO и небольшого количества воды. В процессе окрашивания получались наночастицы галенита (сульфида свинца).

Естественный черный цвет волос обеспечивает пигмент меланин, который в виде включений распределен в кератине волоса. Древнеегипетским парикмахерам удавалось добиться, чтобы красящая паста реагировала с серой, входящей в состав кератина, и образовывались частицы галенита размером до пяти нанометров. Они-то и обеспечивали равномерное и устойчивое окрашивание. При этом процесс затрагивал только волосы, а в кожу головы соединения свинца не проникали.

Древний Рим

Чаша Ликурга (IV век до н.э.) - одно из выдающихся произведений древнеримских стеклодувов, хранящихся в Британском музее. Этот кубок необычен не только своими оптическими свойствами, но и уникальной для тех времен методикой изготовления. Матовая зеленая чаша становится красной, если ее осветить изнутри (рис. 2). Впервые анализ фрагмента чаши Ликурга провели в лабораториях «Дженерал электрик» в 1959 году - ученые пытались выяснить, что это за уникальное красящее вещество. Химический анализ показал, что хотя чаша состоит из обычного натриево-известково-кварцевого стекла, в нем есть около 1% золота и серебра, а также 0,5% марганца. Тогда же исследователи предположили, что необычный цвет и рассеивающий эффект стекла обеспечивает коллоидное золото (рис. 2). Очевидно, что технология получения подобного материала была очень сложной.

Позже, когда методики исследования стали совершеннее, ученые обнаружили с помощью электронного микроскопа и рентгенограмм частицы золота и серебра размером от 50 до 100 нм. Именно они отвечали за необычную окраску кубка. Профессор Гарри Этуотер в своей обзорной статье по плазмонам, опубликованной в апрельском номере «Scientific American » 2007 года, объяснил это явление так: «Благодаря плазмонному возбуждению электронов металлических частиц, распределенных в стекле, чаша поглощает и рассеивает синее и зеленое излучение видимого спектра (это сравнительно короткие волны). Когда источник света снаружи и мы видим отраженный свет, то плазмонное рассеивание придает чаше зеленоватый цвет, а когда источник света оказывается внутри чаши, то она кажется красной, поскольку стекло поглощает синюю и зеленую составляющие спектра, а более длинная красная - проходит».

Витражи

Яркие цвета витражей, украшающих храмы средневековой Европы, впечатляют нас до сих пор. Исследования показали, что стекло делали цветным добавки наночастиц золота и других металлов. Чжу Хуай Юн из Технологического университета Квинсленда (Австралия) высказал предположение, что витражи были не только произведениями искусства, но и, выражаясь современным научным языком, фотокаталитическими очистителями воздуха, удаляющими органические загрязнения. Катализаторами служили те же самые наночастицы золота. Ученый доказал, что крошечные частицы золота на поверхности стекла под воздействием солнечного света переходили в возбужденное состояние и могли разрушать органические загрязнения (те, которые до них долетали). Более того, они и сегодня сохраняют свою каталитическую активность.

«Когда золото измельчено до размеров наночастиц, оно становится очень активным под действием солнечного света. Электромагнитные колебания солнечного излучения резонируют с колебаниями электронов золотых наночастиц. В результате общее магнитное поле на поверхности наночастиц золота увеличивается в сотни раз и разрушает межмолекулярные связи загрязняющих агентов, содержащихся в воздухе». Профессор Чжу предполагает, что побочным продуктом этих реакций был углекислый газ, который в небольших количествах сравнительно безопасен.

В настоящее время аналогичная технология лежит в основе создания эффективных очистителей воздуха. Для их работы достаточно солнечного света, нагревающего наночастицы золота, тогда как обычные очистители (в них обычно используют оксид титана, серебро) требуют гораздо больше энергии для нагрева всего катализатора.

Восток - дело тонкое

Во время крестовых походов европейцы столкнулись с лезвиями из дамасской стали, обладающими уникальными свойствами. Европейские оружейники не умели делать такие клинки. У них был характерный волнистый узор на поверхности - его по названию плетения ткани называли дамаск, - необычные механические свойства (гибкость и твердость) и исключительно острое лезвие.

Считается, что дамасские лезвия выковывали из небольших «пирогов» стали (его называли вуц), произведенных в Древней Индии. Сложная термомеханическая обработка, ковка и отжиг, применяемые при получении вуца, придавали стали необычные свойства и обеспечивали ее исключительное качество. Чаще всего в литературе можно встретить «рецепт» производства вуца, который был в ходу в Салеме и некоторых частях Майсора (Южная Индия).

Кусок плавкого железа, полученный из магнитной руды, весом около фунта мелко дробится, увлажняется и помещается в горн из огнеупорной глины вперемешку с мелко нарубленными кусками древесины ранавара (Cassia auriculata, дерево семейства бобовых). После плавки в горне открытые горшки покрывают зелеными листьями калотрописа (Calotropis gigantea ), поверх которых накладывают лепешки из глины, высушенной на солнце до твердого состояния. Древесным углем заменить зеленые листья нельзя, получится не то. Дюжины две таких горшков (тиглей) помещают на пол печи, жар в которой поддерживают с помощью мехов из бычьих пузырей. Топливом служил в основном древесный уголь и высушенные на солнце коровьи лепешки. Через два-три часа плавки тигли остужают, раскалывают и оттуда извлекают заготовку, формой и размером напоминающую половину яйца. Согласно записям известного путешественника и купца Жана-Батиста Тавернье, самые лучшие заготовки для стали делали под Голкондой (Центральная Индия). Они были размером с небольшой пирог, и их хватало, чтобы сделать два меча.

Образец стали, взятый от подлинной дамасской сабли работы известного оружейника семнадцатого века Ассэда Уллаха, ученые Дрезденского университета (Германия) четыре года назад исследовали с помощью электронного микроскопа высокого разрешения. В структуре материала они обнаружили углеродные нанотрубки. Ученые и до этого не раз пытались определить микроструктуру дамасской стали, но на этот раз они сначала протравили образцы соляной кислотой, и именно это дало неожиданные результаты. После обработки обнаружились неразрушенные структуры цементита (карбида железа, который упрочняет сталь). Это позволило физикам предположить, что волокна цементита заключены в углеродные нанотрубки (рис. 3), которые и защищают его от растворения в соляной кислоте.

Откуда в дамасской стали взялись нанотрубки? Сформировались из углеводородов внутри микропор, причем катализатором могли служить ванадий, хром, марганец, кобальт, никель и некоторые редкоземельные металлы, содержащиеся в руде. При производстве дамасской стали температура обработки была ниже стандартной - 800°C. Во время циклической тепловой обработки получались углеродные нанотрубки, которые потом превращались в нановолокна и крупные частицы цементита (Fe 3 C). Циклическая механическая обработка (ковка) и соответствующий температурный режим постепенно распределяли углеродные нанотрубки в плоскостях, параллельных плоскости ковки, делая микроструктуру стали мелкозернистой и пластинчатой. И действительно, как показали последние исследования ученых из Дрезденского технического университета, микроструктура цементита представлена нановолокнами.

Авторы исследования считают, что особенная слоистая структура дамасских лезвий связана также с примесями, содержавшимися в руде из редких индийских месторождений. Уменьшающиеся запасы этой руды привели к тому, что многие оружейники, не знавшие тогда о легирующих элементах, не смогли получить дамасскую сталь, и после истощения рудников в конце XVIII века никому так и не удалось полностью воссоздать ее. Даже зная древний рецепт, европейские оружейники не смогли сделать настоящую дамасскую сталь, которая имела уникальные свойства благодаря наноструктурам.

Собираюсь рассказать в этой статье о современной форме «серебряных» средств для здоровья, которая была разработана в 2011 году и называется структурированным серебром (наносеребром, серебром с наночастицами, nanoparticulate silver, NPS). По эффективности эта форма намного превосходит коллоидное серебро. Применяется против многих видов патогенов — вирусов, бактерий, грибков.
Немного информации, и потом к продукции на основе наносеребра.

Лечение серебром применяется уже многие века. Но его эффективность зависит от формы серебра и способа применения (ncbi ).

У серебра есть замечательная способность выборочно уничтожать патогенные бактерии, не причиняя вреда здоровым пробиотическим бактериям.
Молекулярная структура серебра позволяет остановить большинство бактерий от создания химических связей.
Бактерии, находящиеся в контакте с серебром, не могут размножаться и разрушаются.
Серебро настолько сильная вещь в обеспечении бактериальной защиты, что многие клиники и больницы используют хирургические инструменты на основе серебра, а также мебель с серебряным покрытием, чтобы ограничить распространение любой инфекции.

Поскольку серебро работает на молекулярном уровне, оно способно остановить многие супербактерии и бактериальные штаммы. Согласно Серебра, воздействию наносеребра поддаётся даже устойчивый к метициллину и всем антибиотикам Staphylococcus aureus, смертельный стафилококк.

Наночастицы серебра не метаболизируются в организме и не могут быть причиной аргирии (болезни, возникающей из-за накопления серебра в тканях). Надо сказать, что вопреки нападкам на коллоидные растворы, современные формы известных производителей имеют столь низкую концентрацию, что никаким накоплением солей серебра тоже не грозят, хотя по эффективности им не сравниться со структурированным серебром.

Как же работает серебро на атомно-молекулярном уровне.

1. Сначала рассмотрим атом (одноатомную молекулу) серебра в коллоидном растворе. На внешней орбите вращается один несбалансированный электрон, который отчаянно нуждается в балансе, и для этого он крадёт один электрон у оболочки бактерии, таким образом патоген погибает, а частица серебра уравновешена, нейтрализована, и выпадает из раствора, это значит, что каждая частица для одного «выстрела».

2.
Кристаллическая структура в новых препаратах наноструктурированного серебра является тетраэдрической, это показано на изображении в самом конце статьи. Такая модель «стреляет» как пулемёт, т.е. она крадёт электроны многократно, и частица серебра не выпадает в осадок. Этот раствор убивает 99,99% патогенов за 6 минут.

Также есть более развёрнутые ответы на четыре основных вопроса:

1. Почему само серебро антибактериальное?
2. Как серебро может убить «плохие бактерии», но не «хорошие бактерии»?
3. Как серебро воздействует на нормальные здоровые клетки?
4. Каким образом новые формы серебра превосходят старые формы?

Сразу ещё один вопрос — можно ли структурированное серебро при аутоиммунных заболеваниях.
Ответ положительный:
при ВИЧ
при ревматоидном артрите
— можно почитать об исследованиях по теме взаимодействия наночастиц серебра с иммунной системой. Наносеребро оказывает ингибирующее воздействие на выработку воспалительных цитокинов, это значит, что оно балансирует иммунитет, а не накручивает его.

Переходим к препаратам на основе структурированного серебра


Activz, Леденцы с натуральным серебром, 21 конфета, 3,4 унции (95 г)

Только три компонента — серебро, мёд манука и мятное масло. Пятёрочная штука, без промаха.
Помогает не только быстро вылечиться, но и не заболеть.

Конфетки живут в сумочке или в кармане, особенно при большой инфекционной нагрузке. Работают не только для горла, но и для полости рта. Сколько в день не пишут, но достаточно 1-3 шт.

А вот и вертикальный спрей с наночастицами серебра
Allergy Research Group, Argentyn 23, Vertical Spray, 2 fl oz (60 ml)
Отличный способ не заболеть — пшикнуть когда идёшь в люди, но самое главное, вернувшись домой — прополоскать рот и нос с солью (совет от меня) и попшикать серебром, никакого шанса заразе.
В бутылках у этого производителя тоже есть.

Activz, Заживляющий гель с серебром, 24 PPM, 4 жидких унций (118 мл)

Activz Silver Gel работает быстро, дольше и эффективнее, чем коллоидные и ионные препараты.
Этот «серебряный» гель можно смешивать с другими лосьонами или сыворотками, чтобы придать им дополнительные заживляющие свойства.
Стимулирует естественные процессы заживления.

American Biotech Labs, Silver Biotics, Поддержка иммунной системы , 16 жидких унций (472 мл)

Как использовать раствор структурированного серебра. Принимать на пустой желудок.

У них есть другая «серебряная» продукция, в том числе гель для проблемной кожи и заживляющие гели для ран у людей и животных, которые можно использовать вместе с жидкой формой


Жирный P.S.
Сейчас я всё быстренько усложню по своему обыкновению). Это касается только хронических инфекций.
Я писала об этом немного в статье о цистите, и буду писать в отдельной большой статье. Многие лекарства очень-очень хорошие – как то манноза или наносеребро. Но – хронические неизлечимые инфекции – пока ещё огромная проблема медицины нашего века, это даже не проблема науки, но медицины как системы.
Речь идёт о биоплёнках , это то, что делает хронические инфекции недосягаемыми для антибиотиков, клеток-киллеров иммунитета, а так же для серебра и других средств в одиночку.

«Было продемонстрировано, что биопленки участвуют в широком спектре хронических инфекций, включая синусит, средний отит, хроническую обструктивную болезнь легких (ХОБЛ), эндокардит, дебуцит и диабетические язвы, простатит, конъюнктивит, поверхностные кожные инфекции, инфекции дыхательных путей при кистозном фиброзе, вульвовагинит, инфекции мочевых путей и периодонтит. По оценкам, биопленки усложняют большинство бактериальных инфекций у людей.»

Исследования заявлены и описаны на ncbi – например
На них уйдёт много лет. Поэтому, если проблема стоит остро (а как она ещё может), предлагаю вот эту уважаемого доктора Рональда Хоффмана.
В статье он обращается в основном к докторам и говорит касательно хронических инфекций – гайморита, незаживающих ран и язв, устойчивых кандидозного вагинита и вагиноза, инфекции мочевых путей, хронического пародонтального заболевания и др. – что их лечение в это время должно быть импровизационным.

Доктор Хоффман приводит пример как в лечении незаживающих ран хорошие результаты давали повязки с гидрогелем, в который были добавлены ксилит, лактоферрин и серебро.
Против такого глобального врага работает применение обычного ксилита, лактоферрина, пиретрума и конечно – системных (протеолитических) ферментов. Все они способны подавлять и расщеплять биоплёнки, делая бактерии беззащитными перед действием серебра, антибиотиков и других натуральных или фармацевтических средств.

Вы можете, например, полоскать горло и носовые пазухи с серебром, ксилитом
и лактоферрином, вместе с тем пить ферменты или комплексные разрушители биоплёнок минимум за полчаса до еды (лучше за час), в этой в середине и в конце есть ссылки на эти препараты (лактоферрин, разрушитель биоплёнок и ферменты).

Протеолитические ферменты являются системными ферментами , это значит, что они не только участвуют в пищеварении как все прочие, но они необходимы всему телу, всем клеткам и тканям. Каждая клетка в организме использует эти ферменты для строительства, обслуживания и ремонта себя. Таким образом усвоенные ферменты добираются до взлома биоплёнок, т.е. расщепляют их как прочий мусор – слизь, фибрин, аллергены, токсины, факторы свёртывания крови. Системные ферменты всегда должны быть частью терапии хронических инфекций.

Просьба не забывать, что системные ферменты разжижают кровь, и если у вас есть противопоказания к разжижению крови или вы принимаете антикоагулянты – необходимо обсудить с врачом приём ферментов.

Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 60 0 С. Для увеличения скорости протекания реакции используют гидроксид натрия. Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°

К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя [ Кузьмина Л.Н. Получение наночастиц серебра методом химического восстановления/Л.Н.Кузьмина, Н.С.Звиденцова, Л.В Колесников// Журнал Российского химического общества им. Д.И. Менделеева . – 2007. - Т. XХХ, № 8. – С.7 -12 ] . Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм. При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции таких как температура и концентрация нитрата серебра. Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции.

Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон [ Сергеев Б.М.. Получение наночастиц серебра в водных растворах полиакриловой кислоты/ Б.М.Сергеев, М..В. Кирюхин, А.Н.Прусов, В.Г Сергеев // Вестник Московского Университета. Серия 2. Химия – 1999. – Т.40, №2. – С. 129-133.].

1.2. 2."Зеленый синтез": получение наночастиц с использованием растений

Растения способны восстанавливать ионы металлов как на своей поверхности, так и в различных органах и тканях, удаленных от места проникновения ионов. В связи с этим растения используются для извлечения ценных металлов. Подобный процесс в настоящее время называется фитодобычей. Накопленные металлы можно извлекать из убранных растений с использованием агломерационного и плавильного методов. Исследование процесса биоакумуляции металлов в растениях показало, что металлы, как правило, накапливаются в виде наночастиц. Например, растения Brassica juncea (листовая горчица) и Meticago sativa (люцерна посевная) накапливали наночастицы серебра размером 50 нм в количестве до 13.6% от собственного веса при выращивании на нитрате серебра в качестве субстрата . Икосаэдры золота размером 4 нм выявлялись в M. Sativa , полусферические формы частиц меди размером 2 нм – в Iris pseudocorus (ирис всевдоаировый) , выращенных на субстратах, содержащих соли соответствующих металлов .

В целом механизм синтеза металлических наночастиц в растениях и в растительных экстрактах включает три основные фазы: 1) фазу активации, в процессе которой происходит восстановление ионов металла; 2) фазу роста, в течение которой происходит спонтанное включение мелких соединений наночастиц в наночастицы большего размера (формирование наночастиц за счет гетерогенной нуклеации и роста), что сопровождается увеличением термодинамической стабильности наночастиц, и 3) фазу терминации процесса, определяющую окончательную форму наночастиц .

Процесс образования наночастиц схематически изображен на рисунке 1.Рис. 1. Схема синтеза металлических наночастиц в растительном экстракте. Ионы металла связываются с восстаналивающими метаболитами и стабилизирующими агентами, восстаналиваясь до атомов металлов. Полученных комплекс атома металла с метаболитом взаимодействует с другими комплексами, формируя метаболлическую наночастицу, затем происходит рост и слияние отдельных мелких наночастиц в более крупные за счет процесса переконденсации до тех пор, пока частицы не обретут нужный размер и форму, стабильные в данных условиях.

При увеличении длительности фазы роста наночастицы агрегируют между собой, образуя нанотрубки, нанопризмы, наношестиугольники, а так же множество других наночастиц нерегулярной формы .

В настоящее время для синтеза металлических наночастиц используют различные физические и химические процессы, позволяющие получать наночастицы с заданными свойствами. Однако, несмотря на широкое распространение, это, как правило, дорогостоящие, трудоемкие способы, сопряженные с риском и потенциальной опасностью для окружающей среды и живых организмов. Таким образом, существует очевидная потребность в альтернативных экономически эффективных и в то же время экологически чистых методах производства наночастиц .

При получении наночастиц необходимо учитывать их неустойчивость и высокую реакционную способность, которые могут привести к агрегации наночастиц, потере необходимых свойств при взаимодействии с окружающей средой, изменить структуру наночастиц. Это может нарушить эволюционный переход к наноматериалу и в конечном итоге определить низкий уровень качества эксплуатационных характеристик [Минько с соавт., 2013].

Наночастицы серебра - хорошие антисептики . Благодаря высокой электропроводности они активно используются в производстве товаров широкого потребления - пищевых добавок, одежды, бытовой техники, игрушек. В связи с этим важно выяснить, не вредят ли они здоровью людей и животных. Исследователи из Института общей генетики им. Н. И. Вавилова под руководством Александра Рубановича при содействии коллег из НИИ общей патологии и патофизиологии РАМН и Научно - производственной компании «Наномет» выяснили, что инъекции наночастиц серебра убивают млекопитающих, но ионы серебра безвредны. На рисунке 1 показана картинка наночастицы серебра .

Рисунок 1 - Наночастицы серебра

Наночастицы серебра авторы работы получили методом биохимического синтеза путем восстановления ионов металла биологически активным веществом из группы флавоноидов. Начальная концентрация наночастиц в водном растворе составляла 0.54 г/л. Действие раствора сравнивалось с действием ионов Ag+ в эквивалентных концентрациях, для чего использовался раствор азотнокислого серебра (начальная концентрация 0.85 г/л).

Молодые экспериментальные мыши, которым делались инъекции растворов серебра в разных формах и концентрациях, были разделены на несколько групп. Животные 30 суток содержались в виварии, где ученые наблюдали за их состоянием и ежедневно вели учет павших. В первые часы после инъекции у грызунов, которым вкалывались наночастицы, снижалась двигательная активность, возникали судороги и паралич задних лапок. Смерть наступала через 12 - 24 часов после введения препарата. Специалисты предположили, что животных губило воздействие нанопрепарата на нервную ткань. Грызуны, которым были введены ионы серебра, остались живы в полном составе, равно как и контрольная группа, которым вкалывали дистиллированную воду. Токсическое действие наночастиц на генетический материал ученые оценивали по количеству патологически измененных спермиев у самцов мышей и степени повреждения ДНК лимфоцитов и других клеток селезенки.

Свойства наночастиц серебра

Свойства коллоидного раствора , в том числе и наночастиц серебра, определяются возможностью коагуляции и перекристаллизации, т. е. агрегативной устойчивостью, а также седиментационной устойчивостью и возможностью их окисления кислородом воздуха. Анализ литературных данных показал, что для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов. Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительной устойчивости исследуемой дисперсии. Может быть зафиксировано изменения окраски системы и образования осадка в ней. Для наночастиц серебра цвет систем от красного (желто - коричневого) меняется до серого и даже черного. Визуальный метод наблюдения может сыграть определяющую роль при исследовании седиментационной устойчивости.

Малые размеры наночастиц приводят к многократному увеличению удельной поверхность материалов , что способствует транзиту самых различных веществ за счет увеличения адсорбционной емкости. Возрастает химическая реакционная способность и каталитические свойства вещества. На эти параметры прямо влияют также физико - химические свойства , включая форму, поверхностную структуру, полярность. Поэтому увеличивается вероятность развития различных процессов внутри отдельных клеточных структур: органелл, биологических мембран, проникновение и контакт с клеточным ядром и ДНК. Во многом цитотоксические свойства наночастиц объясняются их способностью к агрегации внутри клеток .

Было найдено , что при радиационно-химическом восстановлении ионов Ag+ в присутствии наночастиц гетерополисоединений в оптическом спектре возникают полоса золя металла с максимумом при 392 нм и полоса при 650 нм, обусловленная продуктом восстановления («синь»).

Напуск воздуха приводит к окислению «сини», интенсивность полосы наночастиц серебра при этом существенно уменьшается и смещается в длинноволновую область (= 410 нм). Повторное г - облучение раствора восстанавливает предшествующий спектр поглощения. Указанную процедуру «окисления - восстановления» можно провести несколько раз, при этом достигаются те же оптические эффекты. Таким образом, восстановление гетерополисоединения, составляющего стабилизирующий слой наночастиц серебра, обеспечивает повышение электронной плотности на металлическом ядре, что вызывает увеличение интенсивности полосы поглощения и ее «синее» смещение. Соответственно, окисление приводит к обратному эффекту.

Анализируя спектры поглощения, можно предположить, что появление дополнительной полосы поглощения в длинноволновой части спектра говорит о возможной коагуляции и перекристаллизации, происходящих в системе. Aгрегативную устойчивость можно охарактеризовать при помощи метода электронной микроскопии. Он позволяет получить распределение частиц по размерам и формам, а также дает представление о расположение наночастиц в пространстве (несвязанные, коагулированные).

Согласно теории Ми. Друде (Mie. Drude) положение максимума полосы поглощения поверхностных плазмонов в металле определяется по уравнению:

л 2 макс = (2рc ) 2 m (е 0 + 2n )/4рN е e 2 (1)

где c - скорость света;

m - эффективная масса электрона;

e - заряд электрона;

е 0 - диэлектрическая проницаемость металла;

n - показатель преломления среды;

Ne - плотность свободных электронов в металле.

Рассеяние света мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории дифракции света на диэлектрических частицах. Многие характерные особенности рассеяния света частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара r много меньше длины волны света ln в его веществе, рассеяние света на нём аналогично нерезонансному рассеянию атомом. Сечение (интенсивность) рассеяния в этом случае сильно зависит от r и от разности диэлектрических проницаемостей e и вещества шара и окружающей среды: s ~ ln --4r6(e -) . С увеличением r до r ~ ln и более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы -- вблизи так называемых резонансов Ми (2r = mln, m = 1,2, 3) сечения сильно возрастают и становятся равными 6pr 2 рассеяние вперёд усиливается, назад -- ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется.

Рассеяние света большими частицами (r > ln) рассматривают на основе законов геометрической оптики с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц. Важная особенность этого случая -- периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/ln. Рассеяние на крупных частицах обусловливает ореолы, радуги, гало и др. явления, происходящие в аэрозолях, туманах и пр.

Рассеяние средами, состоящими из большого числа частиц, существенно отличается от рассеяния отдельными частицами. Это связано, во - первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во - вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В - третьих, взаимодействие частиц друг с другом не позволяет считать их движения независимыми.

Как уже отмечалось, свойства у наночастицы серебра на самом деле уникальные.

Во-первых, это феноменальная бактерицидная и антивирусная активность. Об антимикробных свойствах , присущих ионам серебра, человечеству известно уже очень давно. Наверняка большинство читателей слышали о целительных способностях церковной святой «воды», получаемой путем прогонки обычной воды сквозь серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не «зацветая».

Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы , чем и объясняется ее благотворное влияние на здоровье человека. На рисунке 2 представлены вирусы атакующие клетку. Скорость, с которой вирус атакует клетку, превышает скорость пули.

Рисунок 2 - Вирусы атакующие клетку

Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы .Как показал эксперимент, ничтожные концентрации наночастиц уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом.

Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается. Дело в том, что оболочка микроорганизмов состоит из особых белков, которые при поражении наночастицами перестают снабжать бактерию кислородом. Несчастный микроорганизм больше не может окислять свое «топливо» глюкозу и гибнет, оставшись без источника энергии. Вирусы, вообще не имеющие никакой оболочки, тоже получают свое при встрече с наночастицей. А вот клетки человека и животных имеют более «высокотехнологичные» стенки, и наночастицы им не страшны.

В настоящий момент проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят огромное количество применений.

Например, фирма «Гелиос» выпускает зубную пасту «Знахарь» с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.

Ткани, модифицированные серебряными наночастицами, являются, по сути, самодезинфицирующимися. На них не может «ужиться» ни одна болезнетворная бактерия или вирус. Наночастицы не вымываются из ткани при стирке, а эффективный срок их действия составляет более шести месяцев, что говорит о практически неограниченных возможностях применения такой ткани в медицине и быту. Материал, содержащий наночастицы серебра, незаменим для медицинских халатов, постельного белья, детской одежды, антигрибковой обуви и т.д., и т.п.

Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

Люди всегда искали способы борьбы с инфекциями, передаваемыми воздушно - капельным путем -гриппом, туберкулезом, менингитами, вирусным гепатитом и т. п. Но, увы, воздух в наших квартирах, офисах и особенно в местах массового скопления людей (больницы, общественные учреждения, школы, детские сады, казармы, тюрьмы и т. п.) перенасыщен патогенными микроорганизмами, выдыхаемыми зараженными людьми .

Традиционные способы профилактики не всегда справляются с этой проблемой, поэтому нанохимики предложили для ее решения очень элегантный способ: добавить в лакокрасочные материалы, покрывающие стены заведений, наночастицы серебра. Как оказалось, на покрашенных такими красками стенах и потолках не может «жить» большинство патогенных микроорганизмов.

Наночастицы, добавленные в угольные фильтры для воды, практически не вымываются с ней, как это происходит в случае обычных серебряных ионов. Это говорит о том, что срок действия таких фильтров будет несоизмеримо больше, а качество очистки воды возрастет на порядок.

Короче говоря, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений. При этом, как уверяют ведущие российские ученые в данной области, стоимость средств и материалов, созданных на их основе, будет не намного дороже традиционных аналогов, и с развитием нанотехнологий они станут доступны каждому. Фирма Samsung уже добавляет наночастицы серебра в сотовые телефоны, стиральные машины, кондиционеры и т.д.

1.2 Основные методы получения наночастиц серебра

1.2.1 Получение наночастиц серебра методом химического восстановления в растворах

Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 60 0 С. Для увеличения скорости протекания реакции используют гидроксид натрия. Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°

К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя . Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм. При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции таких как температура и концентрация нитрата серебра. Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции.

Для исследования влияния рН на устойчивость водных коллоидных растворов, раствор нитрата серебра был предварительно обработан и его значение рН установлено по растворам NaOH и HCl. Процесс восстановления серебра шел замедленно в сильнокислых (рН 1.5) и в основных (рН 12.5) условиях. Коллоидный раствор в щелочной среде сохраняет устойчивость в течении больше, чем 2 недели без образования осадка. В то время как в кислотных условиях подобная стабильность не наблюдается, образовавшиеся агригаты сохраняются лишь в течении 5 дней при рН 1.5.

Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон . Несмотря на то, что принцип селективности для этих систем еще не полностью изучен, предполагают, что селективная адсорбция ПВП на различных кристаллографических плоскостях серебра определяет морфологию продукта.

Оптические измерения коллоидных наночастиц серебра в этаноле показывают единственный максимум при длине волны 395нм, который связан с поверхностным плазмонным резонансом. Это и соответствует сферическим наночастицам серебра размером 5-8нм. Наблюдался процесс разрушения наночастицы при прохождении через энергетический барьер: должно накопиться необходимое для разрушения наночастицы количество энергии и, одновременно, проникнуть в запрещенную энергетическую зону и индуцировать многофотонный процесс.

1.2.1.1 Получение наночастиц серебра методом фотолиза

Процесс фотолиза, с помощью лазерного возбуждения, также может быть использован для получения наночастиц серебра в коллоидных растворах. Камат в своей работе предполагал, что в процессе фотолиза наночастицы серебра теряют электроны за счет фотоэжекции, образуя переходное состояние, которое предшествует окончательному разделению больших частиц. Таками считал, что уменьшение размера частиц наблюдается после облучения нановторичными Nd:YAG лазерными импульсами. Это объясняется частичным нагревом, плавлением и испарением поверхностного слоя. Моханти предполагал, что лазерное облучение разбивает наночастицы серебра на мельчайшие фрагменты, которые снова образуют частицы новых размеров. Таким образом, основным способом контроля размера образующихся наночастиц является облучение.

1.2.1.2 Получение наночастиц серебра с помощью лазерного излучения

В последние несколько лет для получения коллоидных частиц металлов использовалось лазерное облучение. Для элементов, в первых работах Мафуна , было показано, что получение наночастиц с помощью лазера, может быть выполнено в растворах, эта возможность используется металлическими коллоидными частицами, без учета ионов в конце процесса образования наночастиц. Изучается возможность расширения этого процесса для большего числа различных растворителей отличных от воды, что было представлено в работах Амондола , который предложил способ контролирования металлических кластерных соединений за счет переизлучения, мониторинга результатов с помощью исследования оптических свойств. Совсем недавно исследовалось прямое влияние лазерного излечения на золото-серебряную коллоидную смесь, что дало новые способы получения сплавов наночастиц.

Контроль размера, формы и структуры металлических наночастиц технологически важны из-за сильных корреляций между этими параметрами и оптическими, электрическими и кристаллическими свойствами.


Применении пероксида водорода. 2. Экспериментально определить влияние различных катализаторов на процесс разложения пероксида водорода. 3. Исследовать влияние поверхностно-активных веществ (твина – 80) на устойчивость пероксида водорода в водных растворах. ОСНОВНАЯ ЧАСТЬ 1. Пероксид водорода 1.1 Строение молекулы. Физические и химические свойства Пероксид водорода – соединение...



... «Анализ смеси катионов 1 аналитической группы (Na+, K +, NH4+)». Цель работы: закрепление знаний, полученных при изучении свойств катионов; выработка навыков и умений систематического анализа катионов. Оборудование: пробирки, держатель, спиртовка, фильтровальная бумага, индикаторная бумага, стеклянные палочки, анализируемый раствор, реактив Несслера, гидротартрат натрия, дигидроантимонат...

При изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики...